Gaps between the bedside and the bench: Perspectives from the bench

University of Oregon
 • Bernardo Blanco-Sánchez
 • Aurélie Clément
 • Javier Fierro
 • John Postlethwait
 • Jennifer Phillips
 • Alexandra Talafuss
 • Sabrina Toro
 • Phillip Washbourne
 • Jeremy Wegner

Cologne Center for Genomics
 • Gudrun Nürnberg
 • Peter Nürnberg

Human Genetics Hamburg
 • Ellen Schäfer

Baylor College of Medicine
 • Hugo Bellen
 • Shinya Yamamoto
 • Michael Wangler

University of Tübingen
 • Antje Bernd
 • Eberhart Zrenner

Inserm Montpelier
 • Mireille Claustrès
 • Anne-Françoise Roux

McGill University Health Centre Montreal
 • Robert Koenekoop
 • Irma Lopez

University Hospital Cologne
 • Thomas Benzing
 • Hanno Bolz
 • Claudia Dafinger
 • Inge Ebermann
 • Max Liebau
 • Rebecca Ruland
 • Bernhard Schermer
 • Michaela Thoenes

Sponsored by the Office of the Director National Institutes of Health, the National Human Genome Research Institute, the National Institute of Child Health & Development, the National Institute on Deafness & Other Communication Disorders, the National Eye Institute, the Usher 1F Collaborative, and the Megan and Vision for a Cure Foundations
Gaps between the bedside and the bench: Perspectives from the bench

Case study 1: Positive results validate candidate genes

Case study 2: Negative results reveal incorrect diagnoses

Mind the gaps

Undiagnosed Diseases Network
Gaps between the bedside and the bench: Perspectives from the bench

Case study 1: Positive results validate candidate genes
 • Usher syndrome gene discovery

Case study 2: Negative results reveal incorrect diagnoses

Mind the gaps

Undiagnosed Diseases Network
Usher syndrome - the leading cause of deafblindness

- Prevalence ≈ 1 per 6,000 births in the US
 (more common than ALS or Huntington’s Disease)

- Congenital deafness (~4% of deaf have Usher)
 Sensorineural hearing loss
 Vestibular dysfunction

- Retinitis pigmentosa
 Loss of rod photoreceptors
 Progressive tunnel vision as cones die
<table>
<thead>
<tr>
<th>Type</th>
<th>Human</th>
<th>Protein: potential function</th>
</tr>
</thead>
<tbody>
<tr>
<td>USH1B</td>
<td>MYO7A</td>
<td>MyosinV11A: motor activity</td>
</tr>
<tr>
<td>USH1C</td>
<td>USH1C</td>
<td>Harmonin: scaffold</td>
</tr>
<tr>
<td>USH1D</td>
<td>CAD23</td>
<td>Cadherin: calcium dependent adhesion</td>
</tr>
<tr>
<td>USH1E</td>
<td>-</td>
<td>Unknown</td>
</tr>
<tr>
<td>USH1F</td>
<td>PCDH15</td>
<td>Protocadherin15: adhesion, signaling</td>
</tr>
<tr>
<td>USH1G</td>
<td>USH1G</td>
<td>SANS: membrane associated scaffold</td>
</tr>
<tr>
<td>USH1H</td>
<td>-</td>
<td>Unknown</td>
</tr>
<tr>
<td>USH1J</td>
<td>CIB2</td>
<td>Calcium and integrin binding protein</td>
</tr>
<tr>
<td>USH1K</td>
<td>-</td>
<td>Unknown</td>
</tr>
<tr>
<td>USH2A</td>
<td>USH2A</td>
<td>Usherin: Laminin-like transmembrane protein</td>
</tr>
<tr>
<td>USH2C</td>
<td>GPR98</td>
<td>Vlgr1: G-protein coupled receptor, signaling</td>
</tr>
<tr>
<td>USH2D</td>
<td>CIP98</td>
<td>Whirlin: scaffold</td>
</tr>
<tr>
<td>USH3A</td>
<td>CLRN1</td>
<td>Clarin1: 4-pass transmembrane protein</td>
</tr>
<tr>
<td>USH3B</td>
<td>HARS</td>
<td>Histidyl-tRNA Synthetase</td>
</tr>
</tbody>
</table>
Genetic counseling is important for Usher patients
Gene discovery is important for Usher patients
Exome sequencing of undiagnosed patients identifies mutations in PDZD7, a gene of unknown function.
Zebrafish Pdzd7a is localized with other Usher proteins

Eye

Ear

Pdzd7 + ac-tubulin

(Jennifer Phillips)
Stereocilia are defective after *pdzd7a* knockdown

Control

pdzd7a MO

(Bernardo Blanco)
PDZD7 mutations are heterozygous in patients with known Usher gene mutations.
Caspase labeling of dying cells

pdzd7a interacts with ush2a & gpr98 in photoreceptor cell death

(Ebermann et al., 2010)
PDZD7 binds to USH2A & GRP98 proteins

HEK293T cells

V5-USH2A V5-GPR98 V5-PDZD7

36 kD 28 kD 36 kD

FLAG-tag precipitates + anti-V5

(Hanno Bolz & Inga Ebermann)
PDZD7 forms a quaternary complex of USH 2 proteins

(Chen et al., 2014)
Gaps between the bedside and the bench: Perspectives from the bench

Case study 1: Positive results validate candidate genes

- Usher syndrome gene discovery

PDZD7 causes disease
Gaps between the bedside and the bench: Perspectives from the bench

Case study 1: Positive results validate candidate genes

- Usher syndrome gene discovery

PDZD7 causes disease

Where are the missing homozygous and compound heterozygous patients?

- embryonic lethal? (model organism data suggest not)
- patient pool too small?
 - limited access to patient data?
 - lack of communication (or sharing) among clinicians?
Gaps between the bedside and the bench:
Perspectives from the bench

Case study 1: Positive results validate candidate genes
 • Usher syndrome gene discovery

Case study 2: Negative results reveal incorrect diagnoses
 • Joubert syndrome

Mind the gaps

Undiagnosed Diseases Network
Consanguineous family with deafness

(Solaf Elsayed & Hanno Bolz)
Mapping homozygosity by descent identifies no good candidates
Whole exome sequencing for homozygous SNPs identifies mutation in $AHI1$, a gene responsible for Joubert syndrome.

Patients

II:3 & II:5
- p.Arg1066* (homozygous)

I:1 & I:2
- p.Arg1066* (heterozygous)

Wildtype
Joubert syndrome - a severe ciliopathy disease

• Underdevelopment of the cerebellum and brainstem*
• Impaired intellectual development, seizures
• Retinitis pigmentosa
• Developmental abnormalities
• Kidney and liver abnormalities
Homozygous patients have normal CNS MRIs

(Raoul Heller & Hanno Bolz)
Nonsense mutation truncates the protein-protein interaction domain of \textit{AHI1}
Targeting upstream in zebrafish gene blocks expression

Cluster of severe disease causing mutations

p.Arg1066*

Protein-protein interaction domain
Upstream targeting produces strong ciliopathy phenotype

uninjected control

SPL8

(Jennifer Phillips)
3' targeting truncates the protein

Cluster of severe disease causing mutations

bp

400 500

Ctrl SPL8

p.Arg1066*

e23i23

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

SPL8
e23i23

(Jennifer Phillips)
Truncated protein has no apparent phenotype

uninjected control

e23i23

SPL8

(Jennifer Phillips)
Nonsense *AHI1* mutation is not linked to deafness

(Solaf Elsayed, Raoul Heller & Hanno Bolz)
Gaps between the bedside and the bench: Perspectives from the bench

Case study 1: Positive results validate candidate genes
 • Usher syndrome gene discovery

Case study 2: Negative results reveal incorrect diagnoses
 • Joubert syndrome

Mind the gaps (perspective from the bench)
 • Barriers to accessing patient data
 • Sociological: clinical vs basic research attitudes
 • Limited access to clinical records: de-identified vs IRB
 • Limited patient data: horde vs share variant & phenotypic data

Undiagnosed Diseases Network
Seven clinical sites, a coordinating center, two DNA sequencing cores, a metabolomics core, a model organisms screening center, and a central biorepository.
Gaps between the bedside and the bench: Perspectives from the bench

Case study 1: Positive results validate candidate genes
 • Usher syndrome gene discovery

Case study 2: Negative results reveal incorrect diagnoses
 • Joubert syndrome

Mind the gaps (perspective from the bench)
 • Barriers to accessing patient data
 • Sociological: clinical vs basic research attitudes
 • Limited access to clinical records: de-identified vs IRB
 • Limited patient data: horde vs share variant & phenotypic data

Undiagnosed Diseases Network
Gaps between the bedside and the bench: Perspectives from the bench

University of Oregon
 • Bernardo Blanco-Sánchez
 • Aurélie Clément
 • Javier Fierro
 • John Postlethwait
 • Jennifer Phillips
 • Alexandra Talafuss
 • Sabrina Toro
 • Phillip Washbourne
 • Jeremy Wegner

Cologne Center for Genomics
 • Gudrun Nürnberg
 • Peter Nürnberg

Human Genetics Hamburg
 • Ellen Schäfer

Baylor College of Medicine
 • Hugo Bellen
 • Shinya Yamamoto
 • Michael Wangler

University of Tübingen
 • Antje Bernd
 • Eberhart Zrenner

Inserm Montpellier
 • Mireille Claustres
 • Anne-Francoise Roux

McGill University Health Centre Montreal
 • Robert Koenekoop
 • Irma Lopez

University Hospital Cologne
 • Thomas Benzing
 • Hanno Bolz
 • Claudia Dafinger
 • Inge Ebermann
 • Max Liebau
 • Rebecca Ruland
 • Bernhard Schermer
 • Michaela Thoenes

Sponsored by the Office of the Director National Institutes of Health,
the National Human Genome Research Institute,
the National Institute of Child Health & Development,
the National Institute on Deafness & Other Communication Disorders,
the National Eye Institute,
the Usher 1F Collaborative, and the Megan and Vision for a Cure Foundations