The dynamics of microbial communities can be defined as temporal and spatial changes in community structure or function.
In 1997 Grimm and Wissel catalogued 167 definitions of community stability in the field of ecology.

- **Resistance** (or constancy) – staying essentially unchanged over time.
- **Resilience** – returning to the reference state after a disturbance.
- **Persistence** – persistence of an ecological state through time.

Stability quantifies the extent to which a community "stays the same" over a long period of time (depending on the time scale) or in the face of some disturbances.

Measures used to study stability/instability

- Culture/physical measurement (i.e., pH), microscopy
- Microbiota compositional change (16S rRNA gene survey) - Relative abundance
- Microbiota compositional change (species specific qPCR - pan-bacterial qPCR)
- Estimates of diversity (evenness and richness, relative entropy)
- Metagenomic characterization (microbiome: genes/genomes content, SNP)
- Functional analysis of metagenomic data (metabolic potential)
- Metatranscriptomics/metaproteomics (function of a community)
- Metabolomics (functional output of a community)

Communities can appear stable given one metric and unstable given another one.
Definitions

Disturbance/Resilience

- A disturbance may be defined as an event that disrupts community structure and/or simultaneously changes resources, substrate availability, or the physical environment.

- A disturbance can also be defined as a killing, displacement, or damage to one or more populations in a community that directly or indirectly creates opportunities for new individuals to become established.

- Resilience is the amount of disturbance that an ecosystem can withstand without changing its self-organizing processes.

- Communities with fundamental differences in species composition and structure will differ in resilience.

Ecosystem disturbances/resilience

Disturbances to the microbiome are often imposed by human actions:
- hygiene
- diet
- behaviors
- antibiotics

But also include:
- natural states (menstruation)
- hormonal variations
- immunological changes

What are the drivers of change and resilience in a microbial community?
Issues with current study

- While key studies, most looked at either low number of time points (short sampling period, long period between samples) or very few subjects (sampled frequently) - Difficulties in generalizing the findings/conclusions
 - Feasibility and cost have limited these studies

- Principles of community dynamics are certainly body site specific and not applicable across the spectrum of community types on the human body

- Compositional analysis often done at low taxonomic resolution (Phylum, Class, Order)

The dynamics of the vaginal microbiota in reproductive age women
The Vaginal Community Space

A plot of principle component analysis (PCA) shows distribution of community states in 3-D space.

- Cross sectional study of 410 asymptomatic healthy women
- Five community state types (CST) that differ in their microbial composition and abundance
- Community state type IV lacks significant number of Lactobacillus - higher diversity - (IV-A and IV-B)

Longitudinal studies of the vaginal microbiota

Study design

- 160 women cohort - prospective longitudinal study
 - Self-collect vaginal smears, pH and swabs daily for 10 weeks
 - Three swabs a day: Amies, RNAlater and dry
 - Daily diary and weekly clinic visits
 - Clinical assessment at enrollment, week 5 and 10
 - Determine bacterial community composition by 454 pyrosequencing of barcoded V1-V3 16S rRNA gene of 50 women
Drivers of instability

Modeling the dependence of the log of Jensen-Shannon divergence rate of change (estimate of stability) on the menstrual time (normalized time) - Bayesian Markov Chain Monte Carlo methods using linear mixed effect models.

The rate of community change is affected by time in the menstrual cycle (natural change) and sexual activities to some extent.
Vaginal community dynamics

In these healthy, asymptomatic women, CST IV is associated with higher Nugent scores and higher pH.
At any given time, >25% of women are in a non-*Lactobacillus* dominated state.

- This state is associated with higher Nugent scores and higher pH.
- High Nugent score is strongly associated with increased risk of sexually transmitted infection acquisition and transmission, including HIV, as well as preterm birth.
- These women are asymptomatic and apparently healthy, but potentially at increased risk of STI or other adverse outcomes.

There are windows of higher risk that open and close on a temporal scale.
Vaginal community dynamics

Windows of higher risk that open and close on a temporal scale

Community stability/dynamics (frequency and duration of CST IV) might better represent risks to disease

Low resilience = increased risk

Still, we do not understand the underlying causes for stability/dynamics (frequency and duration of CST IV)

Understand the molecular basis of the association between stability and susceptibility
Stability and the community genome

- Is there a correlation between the gene content of some of the species and community stability?
 - Use metagenomics analysis of microbial communities
 - Establish community composition and assemble the genomes of community members
 - Perform comparative genome analysis with known genomes

Metagenomics analysis: *L. iners* genomics
Certain kinds of *L. iners* genomes appear associated with community resilience to enter CST IV.

Does the “fragility” of a single keystone species drive the community into dysbiotic states that carry risk to disease?

We hypothesize that vaginal microbiome stability/dynamics (frequency and duration of CST IV) might better represent estimates of risks to infection and that stability/instability can be driven by the lack of resilience of certain keystone *Lactobacillus* sp.
Gaps and Challenges

• The issue of cause or effects - Need for prospective longitudinal studies
• Better understand the drivers of dynamics/stability or instability in health (risk to disease) over a women’s lifespan
• Understand what a shifting microbiome means functionally (role of microbiota and host).
• Need to evaluate the dynamics using different measures (metabolomics, metatranscriptomics [host and microbes] and immunological)
• Expand the studies to dynamics of phages, viruses and fungi
• Develop predictive models of stability/instability/susceptibility that accounts for health practices and behaviors.
• Translate this information in better diagnostics, prognostics, and treatments - moving toward personalized medicine

Acknowledgments

Larry Forney
Zaid Abdo
Maria Schneider
Xia Zhou
Xue Zhong
Ursel Shütte
Matt Settles
Roxana Hickey

Pawel Gajer
Rebecca Brozman
Stacey McCullee
Guoyun Bai
Li Fu
Bishoy Michael
Anup Mahurkar

Bing Ma
Doug Fadrosh
Sara Koenig
Joyce Sakamoto
Melissa Nandy
Hongqi Yang
Owen White

Ligia Peralta
Reshma Gorle
Mishka Terplan
Esther Colinetti

THE UNIVERSITY OF ALABAMA
Jane Schwebke
Charles Rivers
Molly Flynn

National Institutes of Health
NIAID U01 - AI070921 - R03-AI061131
NIAID UH2 - AI083264 - U19-AI084044