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•  Competitive exclusion of pathogens  
•  Metabolic/nutritional/energy 

utilization 
–  Vitamin synthesis  
–  SCFA as energy source- role in 

obesity 
•  Adaptive Immune Regulation,  

–  Induction of Immunosuppressive T 
cells (Tregs) 

•  Innate Immune Regulation  
–  Dampening of inflammatory 

responses  
•  Epithelial development and survival  

–  Cytoprotective effects of PRR 
signaling   

–  Stimulation of barrier function, IEC 
restitution, proliferation  

Effects of the microbiota on the gut 



The Intestinal Epithelia (motility, 
proliferation, differentiation) 

Germ-free studies 
•  Small intestinal crypts exhibit a slower turnover of the epithelial cells, 

with crypt to villus transit time doubling 
•  Markedly attenuated regenerative responses to colonic injury 



The microbiota can influence normal 
homeostasis of the gut aside from traditional 
innate immune responses 

Question:  
How the normal microbiota mechanistically 

interacts with the epithelia is not well 
understood 

How the microbiota can influence epithelial 
growth and proliferation is not well 
understood 
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Redox regulation of enzymes 
 
•  Mediated by transient oxidation of low pKa catalytic cysteines 
•  Rapid, reversible and highly localized 
•  Known target enzymes: 

–  Ub like protein ligases; SUMO, Ubc12 
–  Dual specificity protein kinases  
–  LMW-PTPases 
–  Keap1 
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•  Plants 
–  Defensive:  Immediate response, lignification response 
–  Root development 

•  C. elegans 
–  Defensive: anti-microbial, ceDuox/BLI-3 
–  Cuticle development 

•  Drosophila  
–  Anti-microbial (dDuox) 
–  Gut epithelial homeostasis (Nox) 

•  Mammalian “professional” phagocytes 
–  Microbiocidal oxidant burst (Nox2) 

•  Mammalian barrier epithelia 
–  Signaling and homeostatic function (Nox1) 
 

Induced ROS as a response to microbes 
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•  Strong conservation of NADPH 
generating enzymes (Nox’s) 
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Commensal bacteria induce rapid epithelial 
ROS generation in vitro and in vivo 

0’              5’              10’            20’              30’ 

Lactobacillus colonized onto IEC-6 monolayers 
prior to DCF detection of ROS  

5 X 107 cfu/ml 

Conventional 10 week female mice were fed cultures of Lactobacillus or sterile PBS 
control for 60 minutes.  Hydrocyanine-Cy3 reagent dosed i.p. 20 min prior. 



           HBSS                  L. rhamnosus                L. casei              S. themophilus             E. coli                                               

Mouse jejunum 

Differential ROS induction by distinct taxa of 
commensal bacteria in vitro and in vivo 
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+ L. rhamnosus 
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B6 Wild type 
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B6 Wild type 
+ E.coli 

 

6-week-old colonic tissue 

ROS 

6-week-old distal small intestine tissue 

B6 Wild type 
+ L. rhamnosus 

 

B6 Wild type 
+ HBSS H&E 

B6.Nox1ΔIEC   
+ L. rhamnosus 

B6 Wild type 
+ E.coli 

 

Colonization of intestine with Lactobacillus induces Nox1-
dependent generation of cellular ROS 



Lactobacilli induces rapid epithelial ROS generation 
in vitro and in vivo at wound edges 



Commensal bacteria induce rapid epithelial 
ROS generation in vivo in the Drosophila gut 

Commensal bacteria 
 

PBS control  
 

Commensal bacteria 
 

PBS control  
 

Third instar  
Drosophila 

larvae  
Axenic third instar larvae were fed cultures of Lactobacillus  plantarum or 
sterile PBS control for 30 minutes Both L. plantarum and PBS cultures 
included hydrocyanine-Cy3 reagent. 

4x  

63X 



Germ-free  L. plantarum 
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Colonization of the first instar Drosophila midgut by 
Lactobacillus plantarum induces cellular ROS generation 
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Fly dNox is required for ROS generation 



FAK-P PTPs* 

ROS 

ROS inducing stimuli 

Extracellular matrix 
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ROS signaling stimulates epithelial 
movements 
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Streptavidin-precipitation 
IB:anti-LMW-PTP 
 
 
 
 IB:anti-LMW-PTP 

Biotin-n-ethyl-maleimide 

Commensal colonization elicits oxidation and inactivation  
of FAK phosphatase, LMW-PTPase 
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SA 
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Precipitate, immunoblot/assay for 
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Immunofluorescence of F-actin and 
phosphorylated FAK-Tyr-861reorganization 
induced by LGG.  

pFAK861                                         pFAK861, F-actin 

     Control                Lacto
  

     Control                 Lacto
  

5’ 

Commensal colonization elicits rapid 
phosphorylation of FAK 
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migration of model epithelia 



Lactobacilli enhances epithelial wound healing in vivo 

Swanson et al. Enteric commensal bacteria potentiate epithelial restitution via ROS-mediated 
inactivation of focal adhesion kinase phosphatases.  PNAS. 2011	  24;108(21):8803-‐8.	   



Lactobacillus fMLF HBSS 

Control 

FPR -/- 

Nox1 -/- 

Intraluminal Lactobacillus  activates 
ERK in murine colon 
 in vivo within 15 min  

Microbiota stimulates  
phosphorylation of ERK in vivo in a FPR and Nox1 dependent 

manner  

Phospho-
ERK 

Actin 

MyD88  -/- 



Lactobacilli stimulates crypt proliferation in mice in 
a Nox1 dependent manner  

B6.Nox1ΔIEC   
+ L. rhamnosus 

B6 Wild type 
+ L. rhamnosus 

B6 Wild type 
+ HBSS 

B6.Nox1ΔIEC   
+ HBSS 

EdU 
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DNA 

6-week-old small intestine  
B6.Nox1ΔIEC   

+ L. rhamnosus 
B6 Wild type 

+ L. rhamnosus 
B6 Wild type 

+ HBSS 
B6.Nox1ΔIEC   

+ HBSS 



Lactobacilli induces ROS-dependent cellular proliferation 
in the Drosophila intestine 

EdU EdU EdU EdU 

EdU EdU EdU EdU DNA DNA DNA DNA 

Germ-free Conventional 
Germ-free + 

L. plantarum 4h 
Germ-free + 

L. plantarum + NAC 
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DNA 
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Proliferation in the Drosophila epithelia is Nox dependent 



Nox dependent generation of 
physiological levels of ROS by 
Lactobacillus (and likely other 
bacteria) is a novel signaling 
mechanism for transducing bacterial 
signals into host regulatory events 
that mediate intestinal homeostasis, 
proliferation and restitution	  

Conclusion : 



Future Challenges 

– Novel ROS sensitive proteins/pathways 
– ROS dependent signaling  eg Nrf2/ARE 

pathway 
– Correlation with innate immunity and PRR 

signaling 
– Correlation with microbial determinants 

and bacteria taxonomy 
– Role in normal gut development 
– Role in wound healing 
– Role in oncogenesis 



Gaps 

– Epithelial cell biology as a host-microbial 
system 

– Cooperation between model systems 
workers 

–  “Comparative metagenomics” 
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Expression of RNAi against Nox and Duox in fly enterocytes  
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Identify, characterize  ROS 
inducing commensals, 
bacterial products, small 
molecules	  

Extracellular	  

Cytoplasm	  

1.  Epithelial cell culture 
2.  Drosophila 
3.  Mice	  

ROS	  	  producAon	   (Hydro	  Cy3,	  etc)	  

OxidaAon	  of	  regulatory	  proteins	   BIAM/IAA	  (candidate)	  ICAT	  (high	  throughput)	  

EnzymaAc,	  signaling	  assays	  

HomeostaAc	  and	  biochemical	  alteraAons	  

Experimental	  validaAon	  

Systems	  analysis	  

Metabolic	  and	  phenotypic	  analyses	  

Redox	  proteomic	  database,	  redox	  pathway	  maps	  

Identify, characterize  
redox sensitive regulatory 
targets	  

Characterize  and validate 
redox sensitive 
physiologic pathways and 
processes	  



Mitochondrial electron 
transfer chain 

NADPH oxidases 

ROS (Non-radical 
oxidant) e.g. H2O2 

Upstream signals/stress 

Redox Sensor 
e.g. low pKa Cys 

Redox signaling (Physiologic 
signaling) 

ROS (Free radical 
oxidant) e.g. O2

-.  

Macromolecular target 
e.g. membrane lipid 

Oxidative damage 
(Pathologic or microbiocidal) 

ROS effects on the cell 
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•  These data suggest an intriguing role for 
intestinal bacteria in the modulation of the 
cellular homeostatic pathways via ROS 
generation 

•  Possible mechanism for commensal 
“crosstalk” with the host 

•  Possible mechanism for probiotic effects 

Conclusions 



In vivo  In vitro 

Restitution:  Involves coordinated 
epithelial proliferation and 

migration 



ROS mediated signaling regulates multiple 
homeostatic pathways 



Summary 

•  Specific commensals (and commonly used probiotics) 
can stimulate non proinflammatory signaling in the gut 

•  Signaling results in increased epithelial proliferation 
and migration 

•  Physiological “deliberate” generation of ROS is  
involved in these processes 

•  Possible mechanism for beneficial homeostatic 
effects of probiotics  
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Microbiota stimulates crypt proliferation in flies in a 
Nox1 dependent manner  



•  1014 organisms, mostly in 
colon 
–  10x more than humans cells! 

•  Acquired at birth 
•  Approximately 500 genera 

represented 
–  Most in two Divisions, 

Bacteroidetes and Firmicutes 

•  Diverse metabolic abilities 
–  Alternate energy sources and 

fermentative products 

•  Symbiotic with host 

The Microbiota 



ROS generation as a response  
to bacteria 

•  Oxidant or “respiratory 
burst” in phagocytes in 
response to FPR 
signaling 

•  High degree of 
evolutionary conservation 
in wide variety of animals 
and plants 

•  Strong conservation of 
NADPH generating 
enzymes (Nox’s) 

  




