RetroSeq: A Tool to Discover Somatic Insertions of Retrotransposons

Elena Helman

The Cancer Genome Atlas Symposium
November 18, 2011
• Retrotransposons
 – Mobile genomic elements that copy and paste themselves across the genome via an RNA intermediate
Drivers of genome evolution

- Comprise >40% of the human genome
- Most are no longer active...but some remain “hot”
- Major source of genetic variation
 - ~10,000 polymorphic sites
 - Estimated 600-1000 retrotransposon differences between two European individuals
Abundant retrotransposon elements

- **L1 (LINE-1)**
 - 6,000 bp long
 - 500,000 elements (17% of genome)
 - 80-100 still active
 - Autonomous
 - ORF1: RNA-binding protein
 - ORF2: endonuclease and reverse transcriptase

- **ALU**
 - 300 bp long
 - >1 million elements (11% of the genome)
 - Relies on L1 retrotransposition machinery
Effect of retrotransposon insertions

• Insertions affect the genome:
 – Disrupt protein function
 – Affect promoters
 – Create or disrupt sites for RNA splicing
 – Lead to further genomic rearrangement

• Aberrant retrotransposons insertions in cancer:
 – L1 in APC exon in colorectal cancer (Miki et al., 1992)
 – L1 in MYC intron in breast cancer (Morse et al., 1988)
 – 9 L1 insertions in 6 out of 20 lung tumors (Iskow et al., 2010)
Overall goal

Identify the extent of somatic retrotransposon insertions throughout the cancer genome, using paired-end sequencing data
1. Align reads to retrotransposon consensus sequence

2. Locate clusters of pair-mates

3. Identify putative retrotransposon insertion position
Somatic retrotransposon insertion

Normal genome

Tumor genome

Retrotransposon
Simulation Performance

• Inserted 226 L1s and 732 ALUs into BAM file

<table>
<thead>
<tr>
<th></th>
<th>Inserted</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>226</td>
<td>100%</td>
<td>98.3%</td>
</tr>
<tr>
<td>ALU</td>
<td>732</td>
<td>99.9%</td>
<td>99.8%</td>
</tr>
</tbody>
</table>
LINE-1 insertions in CRC

- 9 WGS colorectal tumor/normal pairs
- Retrotransposon consensus sequence database
 - L1 family
 - GIRI Repbase

Composition of LINE-1 insertions

CRC L1 Germline Events (n=1470)
- Both dbs (n=452)
- 1000G (n=24)
- dbRIP (n=348)
- Non-annotated Variants (n=546)

CRC L1 Somatic Events (n=221)
- Gene (n=50)
- Exon (n=3)
- Intergenic (n=157)
- lincRNA (n=11)
Future studies

- Experimental validation in progress

- Extension to other tumor types

- Orthogonal data integration
 - Expression
 - Methylation
Conclusions

• RetroSeq leverages paired-end sequencing data to computationally localize somatic retrotransposon insertions

• Discovered novel retrotransposon insertions present in tumor, but not matched normal tissue
 – Insertions in genes and regulatory regions

• Evidence for reactivation of retrotransposon mobilization in cancer
Acknowledgements

- Mike Lawrence
- Chip Stewart
- Gad Getz
- Matthew Meyerson

- Broad Institute Cancer Genome Analysis Group