Inhibitor-sensitive fibroblast growth factor receptor mutations in lung squamous cell carcinoma

Rachel G. Liao
Laboratory of Matthew Meyerson MD, PhD
TCGA Symposium
November 28, 2012
Squamous cell carcinoma of the lung: a disease without treatment options

- Adenocarcinoma of the lung has seen many targeted therapy advances in the past decade (EGFR, EML4-ALK, ERBB2), while
- Squamous cell carcinoma had few targets and no targeted therapies—and the clinical burden is great

ARTICLE

Comprehensive genomic characterization of squamous cell lung cancers

The Cancer Genome Atlas Research Network*
FGFR events in the TCGA Lung Squamous Cell Carcinoma sequencing project

- ~10% focal amplification of FGFR1
- ~8% mutation across the four receptors
 - 3% FGFR2, 3% FGFR3
- Not significantly mutated across the dataset
FGFR2 and FGFR3 mutations are observed in lung SqCC
FGFR2 and FGFR3 mutations do not repeatedly co-occur with other events except TP53 mutation.
FGFR2/3 mutations are transforming in an anchorage-independent growth assay
FGFR2/3 transformation can be blocked by FGFR inhibitors
Loss of transformation correlates with loss of phosphorylation
Cells exhibiting dependency on the FGFR pathway are sensitive to FGFR inhibitors.
A clinical case

FGFR2 mutation in the coding sequence at p.P253R
An *FGFR2*-positive tumor regresses upon pazopanib treatment
Conclusions

- FGFR2/3 mutations observed in lung SqCC are sufficient to drive transformation in the NIH-3T3 cell line model, and the transformation phenotype can be reversed by FGFR small molecule inhibition.
- Ba/F3 cells dependent on FGFR2/3 signaling for proliferation can be growth inhibited by FGFR small molecule inhibition.
- A clinical success confirms that these findings provide a rationale for further study of patients with FGFR events in their tumors.
- TCGA data have been used effectively to find new driving, targetable events in tumors (though these events do not always meet the threshold of statistical significance).
Acknowledgements

- Matthew Meyerson
- Peter Hammerman
 - Josh Francis
 - Heidi Greulich
 - Ami Bhatt
 - Tzu-Hsiu Chen
 - Bethany Kaplan

- Tanaz Sharifnia
 - Luc de Waal
 - Alice Berger
 - Trevor Pugh
 - Joonil Jung
 - All lab members
 - Novartis
 - Diana Grauss-Porta
 - Ralph Tiedt

- Cory Johannesson
 - Jesse Boehm
 - Ben Munoz
 - Robert Haddad
 - Matt Wilkerson (UNC)
 - David Ornitz (WashU)
 - Pamela Pollock (QIT)
FGFR biology

Table 1
Ligand specificities of FGFR isoforms

<table>
<thead>
<tr>
<th>FGFR isoform</th>
<th>Ligand specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>FGFR1b</td>
<td>FGF1, -2, -3 and -10</td>
</tr>
<tr>
<td>FGFR1c</td>
<td>FGF1, -2, -4, -5 and -6</td>
</tr>
<tr>
<td>FGFR2b</td>
<td>FGF1, -3, -7, -10 and -22</td>
</tr>
<tr>
<td>FGFR2c</td>
<td>FGF1, -2, -4, -6, -9, -17 and -18</td>
</tr>
<tr>
<td>FGFR3b</td>
<td>FGF1 and -9</td>
</tr>
<tr>
<td>FGFR3c</td>
<td>FGF1, -2, -4, -8, -9, -17, -18 and -23</td>
</tr>
<tr>
<td>FGFR4</td>
<td>FGF1, -2, -4, -6, -8, -9, -16, -17, -18 and -19</td>
</tr>
</tbody>
</table>
Disulfide bonding observed in ECD mutations to Cys

FGFR2 dimer

FGFR3 dimer

unreduced

FGFR3 monomer

reduced

actin