Expertise that advances patient care through education, innovation, and advocacy.

www.amp.org
ACCE and Genomic Testing

Elaine Lyon, PhD
Medical Director, Molecular Genetics,
Co-Medical Director, Pharmacogenetics
Associate Professor of Pathology
University of Utah School of Medicine
President, Association for Molecular Pathology
Scope

• Focus on molecular assays, attempting to fit models/definitions developed for clinical chemistry

• Disclaimer: My own opinions, considering BCBSA policy, but also looking towards the future
ACCE Framework

- **Analytical validity:**
- **Clinical Validity**
- **Clinical Utility**
- **Ethical, legal, social implications**

Purposes for tests
- Reduce morbidity/mortality
 - Provide information to manage patient/family members
 - Assist with reproductive decision-making

Framework Comparisons

Matchar Chapter 1. Introduction to methods guide for medical test reviews. JGenIntmed 2012
BioMarkers vs Mutations

• Molecular Biomarkers (associated, relative risks)
 – Clinical trials to establish association
 – More likely to be proprietary
 • GWAS studies
 • Expression patterns

• Pathogenic variants (causative)
 – Mendelian disorders (germline)
 – Oncology (somatic variants)
 • Driver mutations, therapy – drug susceptibility, resistance variants
Analytical Validity

• Does the assay detect what is claimed that it detects?
 – Accuracy/precision studies
 • Determines analytical sensitivity and specificity
 – Region interrogated defined
 • Targeted mutations
 • Gene sequencing
 – Targeted exons, Full gene sequencing (all exons, intron/exon boundaries, some known deep intronic or regulatory mutations
 • Deletion/duplication analysis
 – Performance affected by
 • Interfering substances (well known)
 • Rare, unknown variants at primer/probe sites, creating 2º structure
 • Mosaicism, low mutation levels, limits of detection
 – Continuing evaluation: proficiency testing/alternative assessment
Clinical Validity

• Does the test correctly identify affected/unaffected individuals?
 – Does Analyte (gene) or Assay determine clinical validity?
 • Do mutations in a gene cause disease?
 – Linkage studies, functional analysis, case/control, cloned from known protein sequence
 • Depends on the region interrogated /defined phenotype
 – Clinical sensitivities (F8 example)
 – Not necessarily method dependent
 – PPV/NPV a measure of analytic or clinical validity or clinical utility?
 • How is it defined for single gene disorders?
 – Penetrance, mild vs severe mutations?
 • Dependent on population, indication for testing
Clinical Validity - Complications

• Inherited disease concepts
 – **Penetrance/expressivity**
 – Pleiotropy – single gene influences multiple traits
 – **Clinical Overlap:** pathogenic variants in multiple genes cause similar phenotypes
 – **Phenocopy** – phenotype overlap due to environment that resembles the effect of inherited pathogenic variants
 • Carefully define “phenotype”, (BRCA Example)
 – Polygenic traits: multiple genes contribute to the phenotype
 – **Same test for diagnostic, predictive, carrier testing**
 – Interrogating regions (deep intronic, regulatory) of a gene or genes not well understood will produce more Variants of Uncertain Significance (VUS)
 – All genes on a panel to have established clinical validity
 – ClinGen project funded by NIH to examine disease categories
Modified ACCE (Fryback-Thornbury) for Clinical Utility

• Diagnostic Thinking Efficacy (Diagnosis):
 – Rule out disease (differential diagnosis)
 – Stop diagnostic odyssey: prevent additional testing
 – Appropriate follow-up/monitoring

• Therapeutic efficacy
 – Drug response

• Patient outcome efficacy
 – Patient management: improve outcomes
 – Prognostic: Determine aggressiveness of disease/treatment
 – Predictive: pre-symptomatic, familial mutations, reproductive

• Societal efficacy:
 – Proper use of medical/community resources
Reasons to Show Utility

• Aid clinicians in ordering, interpreting
• Demonstrate value of genomic medicine
• Reimbursement
Definition of Clinical Utility

• Utility for patient, clinician, payers, regulators, society

• Definition of Clinical Utility
 – Narrow: Determine drug and dose – improved outcomes demonstrated
 – For clinician/patient: diagnosis, treatment, management
 • Inherent utility of diagnostic testing
 – For patient/family: predictive testing, reproductive planning, long term care planning
 – For Payers: treatment, improved outcomes
 – For Regulators: analytical and clinical validity, expand to utility?
 – For Society: Efficient use of healthcare/community resources
Establishing Clinical Utility

- Randomized prospective controlled studies
- Retrospective studies
 - Archived samples
- Issues with:
 - Rare inherited diseases
 - Rare mutations (somatic)
 - Long duration
 - Ethically valid?
 - Inconclusive results
 - Poorly designed
 - Insufficient numbers
EGAPP

• **Evaluation of Genomic Applications in Practice and Prevention**

• Common conclusion
 – Insufficient evidence
 • ...found insufficient evidence to support a recommendation for or against use of CYP450 testing in adults beginning SSRI treatment for non-psychotic depression.
 • In the absence of supporting evidence..., EGAPP discourages the use of CYP450 testing for patients beginning SSRI treatment until further clinical trials are completed

• Taken as “Evidence Against”
 – SSRI studies extended to other uses

• Re-evaluate with continuing studies

http://www.egappreviews.org/
Circular Problem

Lower evidence → Marker utility poorly valued

Lack of clinical trials → Not reimbursed

Lower funding/lack of interest → Lower evidence

Testing Symptomatic Individuals

• Diagnostic:
 – Explain the clinical symptoms
 – Understand disease course

• Prognostic:
 – Understand likely disease progression
 – Preventive management

• Therapeutic:
 – Determine most effective treatment/management
Asymptomatic Individual

• Predictive testing
• Family history
• Known familial mutations
 – Test affected individual for the benefit of family members
• Population screening
 – Newborn screening (State programs)
Testing Cancer Cells (Somatic)

• Diagnostic: identify genetic abnormalities causative of or resulting from disease
• Prognostic: determine aggressiveness of disease/treatment
• Predictive: determine therapy, resistance to therapy
Models

• Fully powered clinical studies not always feasible
 – Underpowered or partial data modeled for useful information?
• Require models for different scenarios? Types
 – Oncology
 • Chain of evidences (biological relationships/pathways)
 • Demonstrative usefulness in one or multiple cancer/specimen types?
 • Define “supportive” and “adequate” evidence
 – Inherited diseases
 • Approximately 4600 known medically relevant genes
 – Show each disease separately?
 – Another 20,000 in genome – how many will be shown to be medically relevant?
 • Compare to non-molecular diagnostic pathway/procedures
 • Diagnostic efficacy
• Same assay used for different purposes
Clinical Utility for Oncology

• “Driver” mutations essential for tumor progression
• “Passenger” mutations that might facilitate, but not essential for progression
• Prognosis
 – Help determine aggressiveness of treatment
• Predictive testing for therapy
 – Multiple tumor types – *BRAF* V600E
 – Histologically identical tumors - *KRAS2*
<table>
<thead>
<tr>
<th>CONDITION</th>
<th>DIAGNOSIS</th>
<th>MANAGEMENT</th>
<th>PROGNOSIS</th>
<th>PREDICTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute myeloid leukemia</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Stem cell transplant monitoring</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Chronic lymphocytic leukemia</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Chronic myelogenous leukemia</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Colon Cancer</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Breast and ovarian cancer</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Non-small cell lung cancer</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Acute promyelocytic leukemia t(15;17)</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal Stromal Tumors</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Clinical Utility for Inherited Diseases

• Many are rare:
 – Approximately 4600 known human genetic disorders
 – Not feasible to show utility for each one
 – Aggregate by disease type, test method?
 – Still may have strong clinical validity/utility
 • lack cpt codes
 – Together, they are substantive
 • 100% of individuals have genetic variants that could affect drug response
Selected Molecular Tests with Tier 1 cpt

Genetics

<table>
<thead>
<tr>
<th>CONDITION</th>
<th>DIAGNOSIS</th>
<th>MANAGEMENT</th>
<th>PROGNOSIS</th>
<th>PREDICTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha thalassemia, Hb Bart hydrops fetalis syndrome, HbH disease</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Alpha-1-antitrypsin deficiency</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Ashkenazi Jewish:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bloom syndrome</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Canavan disease</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Tay-Sachs disease</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cardiomyopathies</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytogenomic constitutional abnormalities (e.g. Kleinfelter, trisomy 21)</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Familial adenomatosis polyposis (FAP)</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Fragile X</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Huntington Disease</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Hereditary breast and ovarian cancer</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Hereditary hemochromatosis</td>
<td>✓</td>
<td></td>
<td></td>
<td>Limited</td>
</tr>
<tr>
<td>Hereditary non-polyposis colorectal cancer, Lynch syndrome</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Long QT syndrome</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Marfan syndrome</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Nonsyndromic hearing loss</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Rett syndrome</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Spinal Muscular Atrophy</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Example: Hereditary Hemorrhagic Telangiectasia

• Appropriate use of health resources
 – Life threatening cerebral/pulmonary manifestations
 • Brain MRI with contrast:
 • Contrast echocardiogram:
 – 20% need F/U of chest CT, radiation exposure
 – Surveillance: every 5 years in affected individuals, or in unaffected individuals until approximately age 40 (unless ruled out by molecular testing)
 – Guidelines available
 • Faughnan J Med Genet 2011;48:73e87

Pictures courtesy of Whitney Wooderchak-Donahue
Single Gene vs Gene Panel

• ASHG:
 – “…, the scope of genetic testing should be limited to single-gene analysis or targeted gene panels based on the clinical presentation of the patient....”
 – Botkin JR et al. Points to consider: Ethical, legal, and psychosocial implications of genetic testing in children and adolescents. ASHG 2015;97:6-21

• Use most focused assay available (as appropriate)
 – Single gene, if meets clinical criteria
 – Small gene panel improves diagnostic yield, if non-classic phenotype
 – Large gene panels - common symptoms for numerous diseases, in place of an exome?
 – Exome/genome for combination of symptoms/family history consistent with genetic etiology, but remains undiagnosed
Marfan syndrome
- Tall stature
- Arachnodactyly
- Hypermobile joints
- Scoliosis
- Aortic aneurysm
- Learning disability
- Positive family history, sudden death in a close relative

Loeys-Dietz Syndrome
- Arterial tortuosity
- Hypertelorism
- Bifid (split) or broad uvula
- Aneurysms
- Scoliosis
- Positive family history, sudden death in a close relative

Ehler Danlos Syndrome Type IV
- Aneurysm
- Thin, translucent skin
- Extensive bruising
- Hypermobility
- Clubfoot
- Spontaneous pneumothorax
- or haemothorax
- Positive family history, sudden death in a close relative

Arterial Tortuosity
- Tortuosity, elongation, and aneurysms of major arteries and the aorta
- Aortic stenosis, pulmonary artery or pulmonary valve
- Hypertelorism
- Hypermobile joints
- Arachnodactyly
- Scoliosis
- Hyperextensible skin
- Positive family history, sudden death in a close relative

Courtesy of Dr. P Bayrak-Toydemir
Marfan Single Gene Assay

- 66 exons
- Mutation positive (~10% positivity rate)
 - Includes known pathogenic and suspected pathogenic
 - 56%: diagnosis based on clinical phenotype
 - 44%: suspected diagnosis of Marfan disease
- ~4% Variants of uncertain clinical significance
 - 64%: suspected diagnosis of Marfan
 - 37%: diagnosis based on clinical phenotype

p. Arg545Cys
Clinical Sensitivity of Gene Panel

• Aortopathy panel:
 – 17 genes
 – Each has clinical validity/utility separately
 – Clinical sensitivity: approximately 20%
 (doubled)
 • Internal data from Dr. P Bayrak-Toydemir
Looking towards the Future: Exome Diagnostic Yield

• Overall
 – 25%

• Severe Intellectual Disability: 16%

• Neurological diseases: 64%
 • Brain. 2015 Feb;138(Pt 2):276-83.

• Retinal dystrophies: >50%
 • Am J Opthal online April 2015 doi:10.1016/j.ajo.2015.04.026
Levels of Evidence

• Multiple models needed
 – Randomized control studies
 – Retrospective
 – Adaptive clinical trials
 – Diagnostic yield
 – Observational data
 – Linkage
 – Functional studies
 – Biological relationships/pathways
 – Current care vs molecular diagnostic models
 – Professional organization practice guidelines
Thanks to:

• AMP’s Committees
 – Professional Relations
 • FEND working group
 – Clinical Practice
 – Economic Affairs

• ARUP Molecular Genetics/Genomics
Expertise that advances patient care through education, innovation, and advocacy.

www.amp.org