Navigating the Regulatory and Compliance Environment in Clinical Laboratory Testing

V.M. Pratt, Ph.D., FACMG
Objectives

• Understand the difference between regulatory and non(sub)-regulatory
• Differentiate between the various HHS areas of oversight
• Define deemed status entities
• Differentiate between various test kits and laboratory developed assays
• Understand analytical validation
Regulatory versus Non-regulatory

- **Regulatory = law**
 - If you don’t follow the law, you can go to “jail” (pay huge fines)
 - In Federal Register
 - Subject to Notice of Proposed Rulemaking (NPRM)
 - Allows comment prior to becoming law

- **Non-Regulatory**
 - AMP (Association for Molecular Pathology) guidelines
 - ACMG (American College of Medical Genetics) guidelines
 - CAP (College of American Pathologists) guidelines
 - NCCN (National Comprehensive Cancer Network) guidelines
Oversight

HHS

- FDA
 - "Manufacturers"
- CMS
 - "Clinical"
- NIH
 - "Research"
- Medicare
 - "Payment"
- CLIA
 - "Clinical Laboratories"
- CDC
 - "Public Health Laboratories"
CLIA
CMS

- CLIA’88 – responsible for clinical laboratory testing
 - Quality assurance standards
 - Proficiency standards
 - Record maintenance
 - Personnel qualifications
 - Quality control
- Medicare reimbursement
- If not doing medical testing, don’t need CLIA license
 - Ancestry
 - Paternity
 - Recreational genetics
CLIA’88

- The Clinical Laboratory Improvement Amendments of 1988 statute is an amendment to the Public Health Services Act in which Congress revised the federal program for certification and oversight of clinical laboratory testing (42 CFR 493)
CLIA deemed status

• Has higher standards than CLIA
• Includes
 NYSDOH (http://www.wadsworth.org)
 CAP (http://www.cap.org)
CLIA – CAP - NYSDOH

- **CLIA**: Any medical test and bill CMS
- **CAP**: Most labs obtain
 - Suggests higher quality than CLIA
 - Administers PT program
- **NYSDOH**: required if testing patients from NY
 - Suggests higher quality than CLIA
 - Administers PT program
CMS/CLIA “Speak”

- Laboratory director = CLIA license holder
 Only 1 per CLIA license
- Technical supervisor = often referred to as a director
- General supervisor = supervisor
- Technical consultant = MD, PhD, or DO; cannot be GC
- Technologist
CLIA “Speak” #2

• Laboratory classifications
 Physician office labs – POC (Point of care)
 • pregnancy tests
 • Strep test
 Low complexity
 Medium complexity
 High complexity
 • Almost all genetic tests fall into this category, especially NGS
Proficiency Testing (PT) /Alternative Assessment (AA)

• Required 2X per year for every analyte
• CAP and NYSDOH have PT programs
• Other programs
 - EMQN (Europe)
 - INSTAND (Germany)
• If no formal program, must do AA
 Exchange samples with another lab
 Re-test samples in blinded manner in own lab
Regulated vs. Non-regulated analytes

• PT is required for only the limited number of tests found in Subpart I, Proficiency Testing Programs for Nonwaived Testing, of the CLIA regulations.

• CLIA requires laboratories to take steps to assure the accuracy of testing in lieu of testing PT samples. CLIA requires that, at least twice annually, you **verify the accuracy of any test or procedure that you perform that is not listed in Subpart I.**
CAP Overview

• Established in 1946
• Leading organization for board-certified pathologists
• More than 18,100 members and 600 employees
• Headquarters: Northfield, Illinois; Advocacy office in Washington, DC
CAP Accreditation Overview

- Offering laboratory accreditation since 1963
- Helps laboratories achieve the highest standards of excellence
- More than 7,600 CAP-accredited laboratories in 50 countries
- Estimated 22,000 laboratories in 100 countries enrolled in the CAP’s proficiency testing (PT) programs
CAP Accreditation

• Sets high standards for clinical, anatomic, and specialty laboratories that address quality, efficiency, and safety:
• Extends beyond CLIA regulatory requirements
 - focuses on improving quality
 - encourages quality culture
• CAP performs biennial inspections
• Uses trained peer inspectors
• Self inspections required
• Laboratories need to adhere to checklist requirements
• CLIA only requires formal PT for 83 analytes, but CAP includes many more
• CAP helps facilitate interlaboratory proficiency exchanges
• Explicitly requires clinical validity, which can be documented by literature
• CAP programs help labs attain excellence in testing
• Leads in developing requirements for molecular oncology, cytogenetics, and reproductive medicine
CAP Laboratory Accreditation Program: Two-Year Cycle

- Performs a self-inspection at one year
- Meets requirements & accredited for two years
- Corrects cited deficiencies & demonstrates compliance
- Inspection conducted (Three-month window)
- Receives custom checklists & prepares for inspection
- CAP assigns the inspector/team assembled
- Applies & completes application

Proficiency testing monitored continually for regulated and non-regulated analytes

© 2014 College of American Pathologists. All rights reserved.
CAP Standards for Laboratory Accreditation

• Standard I – **Director and Personnel**
 - qualified, responsible for meeting standards, given authority

• Standard II – **Physical Resources**
 - nature, adequacy, safety, disabilities

• Standard III – **Quality Management**
 - extensive list of policies and procedures to ensure quality testing and patient safety

• Standard IV – **Administrative Requirements**
 - checklists, inspections, self assessment, records and documentation, terms of accreditation
Accreditation Checklists

- Laboratory General
- All Common
- Anatomic Pathology
- Team Leader Assessment of Director and Quality
- Chemistry and Toxicology
- Clinical Biochemical Genetics
- Cytogenetics
- Cytopathology
- Flow Cytometry
- Hematology and Coagulation
- Histocompatibility
- Immunology
- Limited Service Laboratory
- Microbiology
- Molecular Pathology
- Point-of-Care Testing
- Transfusion Medicine
- Urinalysis
CAP Laboratory Accreditation Program: Value of Peer-Based Inspections

• Laboratory professional (pathologist, technologist, etc.)
 - Gains insight through interacting with peer professionals
 - First-hand knowledge to offer constructive feedback
• Promotes continuous education & improvement
• Inspectors with Specialty Expertise
• Working professionals exposed to new technologies
• Domestic and international inspections
• Staff Inspectors
 - Ancillary sites and large groups of limited service labs
 - Participate in all for-cause inspections
FDA

• Mandate that device is “safe” and “effective”
 PMA = new device (FDA-approved)
 510K = equivalent to predicate device (FDA-cleared)
 De novo 510K = lower risk new device (FDA-cleared)
 • May also be new assay on approved platform
 HDE = Humanitarian device exemption

• Requires QSR = Quality system regulation (similar to ISO = International Organization for Standardization)
• Approval/Clearance does not determine reimbursement
Draft Guidance for Oversight of LDTs

- 60-day to Congress on 31 July 2014
- Notice by the Food and Drug Administration on 10/03/2014 in federal register
- Goal to ensure analytical and clinical validity
- 2016 – to finalize
FDA Oversight of LDTs: Phased and Risk-based

- **Finalization of guidance**
- **12 months**: Begin premarket review of highest risk LDTs on market.
- **2 years**: FDA to announce priority list for high risk (Class III) tests.
- **4 years**: FDA to announce priority list for moderate risk (Class II) tests.
- **9 years**: Full implementation of guidance.

- **6 months**: Complete notification, Begin adverse event reporting.
- **18 months**: FDA to publish draft guidance on risk.
- **3 years**: FDA to begin enforcing premarket review of high risk LDTs.
- **5 years**: FDA completes premarket review of high risk LDTs and begins review of moderate risk LDTs.
Operational issues

• Conflicts between CLIA and FDA regulations
 FDA restriction of off-label promotion versus CLIA allows clinical consultation
 CLIA regulation versus FDA’s quality system regulation (QSR)
 Laboratory service directory versus package insert
 Malpractice versus product liability insurance
Professional Societies/Organizations

- Have no regulatory oversight
- Can determine standards of care
 ACMG guidelines
 AMP guidelines

AMP/ACMG/CAP interpretation of sequence variants (in draft)
TEST KITS
FDA-cleared/approved

- A kit that includes all or most of the test components and a written procedure

- Affymetrix CytoScan® Dx Assay
 FDA-cleared (de novo 510K)
FDA-cleared/approved (modified)

- A kit that includes all or most of the test components and a written procedure
 Modifications/changes that validated and are not in package insert
- Illumina’s FDA-cleared MiSeq instrument and reagents (MiSeq Universal Kit) may be used as FDA-modified for gene(s) in clinical testing
Investigational use only (IUO)

Includes all or most of the test components and a written procedure
Undergoing initial development and evaluation concurrent with clinical studies
Not to be used as a diagnostic procedure without confirmation of the diagnosis by a second, medically established diagnostic device or procedure

http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm253307.htm
IUO (modified)

- A kit that includes all or most of the test components and a written procedure
 Modifications/changes that validated and are not in package insert

- Still considered IUO
Research use only (RUO)

Includes all or most of the test components and a written procedure

Intended for performing basic scientific or animal research in the search for a diagnostic hypothesis or intended use for a new diagnostic device.

Good manufacturing practices (GMP) are not required

Not intended for use as building blocks for laboratory-developed assays and not intended to be used to facilitate the reporting of results to patients or health care professionals for clinical purposes

http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm253307.htm
RUO (modified)

- A kit that includes all or most of the test components and a written procedure
 Modifications/changes that validated and are not in package insert

- Still considered RUO

Always consult with your institution’s legal team
CE (Conformité Européenne)-marked

- A kit that includes all or most of the test components and a written procedure

- OK for Europe
- May be considered RUO in USA
Forensic use only

- A kit that includes all or most of the test components and a written procedure
- OK for forensics
- May be considered RUO in clinical testing
Laboratory developed procedures/tests

- Components of assay are determined by laboratory
 May use kits for part of assay
Analyte-Specific Reagents (ASRs)

• Generally a single reagent, such as an antibody or nucleic acid probe, that can be used by laboratories in developing a functional clinical assay
ASRs

Vendors

• Must register their establishments and list their reagent(s) with the FDA.
• Must manufacture per the Quality Systems Regulation (QSR).
• Can provide information about the reagent to the user, such as identity and purity, but should not provide information on specific performance characteristics (eg, sensitivity or specificity), estimate of a systematic measurement error.
Research Use Only

• Includes a component of a test with a written procedure (eg, DNA extraction), but NOT specific to an analyte

http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm253307.htm
General Purpose Reagents

Reagents with general laboratory application and are not labeled or intended for specific diagnostic applications

- Buffers (eg, saline, TE, TBE, TAE)
- Restriction enzymes
- Alcohols (eg, ethanol, methanol)

Laboratory equipment, software and automated or powered systems are not considered to be GPRs.
Laboratory-developed tests (LDTs)

- Completely developed in the laboratory
- May include the following reagents/kits
 - Kits without a specified analyte
 - DNA extraction kits
 - RUO reagents
 - ASRs
 - GPRs
ANALYTICAL VALIDATION
Validation/Verification

• Proving that you can detect what you say that you can detect
Verification

- Confirmation that specified requirements have been fulfilled (ISO 9000:2005).
- One-time process to determine/confirm test performance characteristics
- In USA, used for a FDA-cleared assay
- In Europe, used for existing test or technology
Performance Specifications

- CLIA Section 493.1253(b)(1) states
 Each laboratory that introduces an unmodified FDA cleared or approved test system must verify the following performance characteristics before reporting patient tests results:

 - Accuracy
 - Precision
 - Reference Interval
 - Reportable Range
Validation

• Confirmation though the provision of objective evidence that requirements for a specific intended use or application have been fulfilled (ISO 9000:2005)

• Action (or process) of proving that a procedure, process, system, equipment, or method used works as expected and achieves the intended results (WHO-BS/95.1793)

• In USA, used for LDTs or modifications to FDA-cleared assay

• In Europe, used for novel test or technology
Performance Specifications

• CLIA Section 493.1253(b)(2) states
 Each laboratory that modifies an FDA-cleared or approved test system, or that introduces a test system not subject to FDA clearance or approval (including methods developed in-house … or standard methods such as textbook procedures or Gram stains or KOH Preps) must establish (validate) the following performance characteristics before reporting patient test results:
 Accuracy
 Precision
 Reportable Range
 Reference Interval
 Analytical Sensitivity
 Analytical Specificity
 Any other characteristic necessary to perform the test (Carryover, Dilutions, Calculation or QC frequency)
The words can be confusing

- Sensitivity
- Specificity
- Accuracy
- Interferences
- Carry-over
Accuracy

- Trueness of measurement
- Accuracy = true result / (true result + false result)

http://www.med4you.at/laborbefunde/allgemeines/
Precision

• Repeatability and reproducibility of a test result
 within-technologist
 between-technologist
 within-run
 and between-run
Bias

- (of measurement) estimate of a systematic measurement error

Analytic sensitivity

- The ability of a test to detect a mutation when that mutation is present

Sensitivity = $\frac{\text{True positive}}{\text{True positive} + \text{false negative}}$

It is important to document confidence intervals

- Also, some refer to the lower limit of detection (LoD) for the analyte of interest (i.e., the lowest concentration of analyte that the assay can detect). It is preferable to specify LoD, if important for assay.
Analytic specificity

- The ability of a test to give a normal (negative) result in specimens without the mutation being tested

Specificity = \(\frac{\text{True negative}}{\text{True negative} + \text{false positive}} \)

It is important to document confidence intervals

- Also, some refer to the ability of a test to detect the analyte without cross-reacting with other substances. It is preferable to specify cross-reactivity, if important for assay.
Example 1

TO ESTIMATE CONFIDENCE INTERVALS FOR SENSITIVITY, SPECIFICITY AND TWO-LEVEL LIKELIHOOD RATIOS:

Enter the data into this table:

<table>
<thead>
<tr>
<th>Test is positive</th>
<th>Reference standard is positive</th>
<th>Reference standard is negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test is positive</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Test is negative</td>
<td>0</td>
<td>75</td>
</tr>
</tbody>
</table>

Enter the required confidence interval (eg, 95%) here: 95

RESULT:

- **Sensitivity:** 100% CI: 0.8668 to 1
- **Specificity:** 100% CI: 0.9513 to 1

Example 2

TO ESTIMATE CONFIDENCE INTERVALS FOR SENSITIVITY, SPECIFICITY AND TWO-LEVEL LIKELIHOOD RATIOS:

Enter the data into this table:

<table>
<thead>
<tr>
<th>Test is positive</th>
<th>Reference standard is positive</th>
<th>Reference standard is negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Enter the required confidence interval (eg, 95%) here: 95

RESULT:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>100%</td>
<td>CI: 0.5655 to 1</td>
</tr>
<tr>
<td>Specificity</td>
<td>100%</td>
<td>CI: 0.7225 to 1</td>
</tr>
</tbody>
</table>

How to verify an Unmodified IVD

• Perform the assay according to the manufacturer’s specifications
• Using positive and negative samples, verify that the assay can detect the analytes (mutations) as claimed (analytic specificity and analytical sensitivity)
• Perform inter- and intra-assay runs (precision)
• Run blinded panel from reference method, if available (accuracy)
How to validate a LDT

- Develop a procedure that is fit for purpose
- Using positive and negative samples, verify that the assay can detect the analytes (mutations) as claimed (analytic specificity and analytical sensitivity)
- Perform inter- and intra-assay runs (precision)
- Run blinded panel from reference method (accuracy)
Conclusions

• It is important to understand the regulations of clinical testing when performing clinical laboratory services