8q24: Prostate Cancer

Matthew Freedman
GAIN II
October 18, 2007
Summary of LOD scores for 11 CaP linkage scans

Adapted from Schaid Hum Molec Genet 13:R103
History of prostate cancer genetics

Where Are the Prostate Cancer Genes?—
A Summary of Eight Genome Wide Searches

Prostate cancer susceptibility genes: Many studies, many results, no answers

REVIEW ARTICLE
Genetics of Prostate Cancer: Too Many Loci, Too Few Genes

Outline

- Whole genome admixture scan
- Fine mapping
- Work in progress
Established risk factors for prostate cancer

- Age
- Family history
- Ethnicity
Prostate cancer: epidemiology

![Incidence rate per 100,000 men](chart)

- **Asian/Pacific Islander**
- **White**
- **Black**

SEER data – 1998-2002
age adjusted
Whole genome admixture scan

- Started 3 years ago

- Risk allele must be differentially distributed between ancestral populations

- Can scan the genome with many fewer markers than for non-admixed pops
Prostate cancer is a strong candidate disease for admixture mapping

- Incidence rates in African-American men ~1.6 fold higher than European-Am men
- Epidemiologic evidence suggests that prostate cancer is even higher in African men
- Prostate cancer has one of the highest heritabilities out of all epithelial cancers
- No gene has been consistently identified
Admixture creates a mosaic

Two African chromosomes

Two European chromosomes

One African, one European chromosome

4 generations ago

3 generations ago

2 generations ago

1 generation ago

Today
How does admixture mapping work?

Disease locus

African chromosome

European chromosome

Men with prostate cancer
The signal of admixture association

- Positive signal at the 60cM position on chromosome (centimorgans).
Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men

Matthew L. Freedmana,b,c, Christopher A. Haimanc,d, Nick Pattersonb,c, Gavin J. McDonaldb,e, Arti Tandonb,e, Alicja Waliszewskab,e,f, Kathryn Penneyb, Robert G. Steene,g, Kristin Ardlieb,h, Esther M. Johni,j, Ingrid Oakley-Girvani,j, Alice S. Whittemorel, Kathleen A. Cooneyk,l, Sue A. Inglesd, David Altshulerb,e,m,n, Brian E. Hendersond, and David Reichb,e,o

<table>
<thead>
<tr>
<th>Location</th>
<th>Cases</th>
<th>Controls</th>
<th>Cases % European ± 1 standard err.</th>
<th>Controls % European ± 1 standard err.</th>
<th>mean age diagnosis (range)</th>
<th>% with Gleason score >7</th>
<th>% with non-local tumors</th>
<th>% with prostate cancer in a first degree relative</th>
<th>Decrease in peak LOD if these samples are removed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiethnic Cohort</td>
<td>CA & HI 810</td>
<td>730</td>
<td>23.57 ± 0.50%</td>
<td>25.42 ± 0.57%</td>
<td>68 (46-85)</td>
<td>18%</td>
<td>15%</td>
<td>12%</td>
<td>2.58</td>
</tr>
<tr>
<td>L.A. County Men's Health Study</td>
<td>CA 366</td>
<td>107</td>
<td>22.34 ± 0.83%</td>
<td>26.37 ± 2.13%</td>
<td>63 (42-88)</td>
<td>28%</td>
<td>39%</td>
<td>21%</td>
<td>1.37</td>
</tr>
<tr>
<td>Study Early Onset Pros. Cancer</td>
<td>CA 104</td>
<td>-</td>
<td>20.89 ± 1.37%</td>
<td>-</td>
<td>60 (45-65)</td>
<td>31%</td>
<td>49%</td>
<td>14%</td>
<td>1.01</td>
</tr>
<tr>
<td>PCGP</td>
<td>MI 103</td>
<td>-</td>
<td>19.50 ± 1.01%</td>
<td>-</td>
<td>55 (40-86)</td>
<td>11%</td>
<td>29%</td>
<td>39%</td>
<td>1.15</td>
</tr>
<tr>
<td>Flint Men's Health Study</td>
<td>MI 85</td>
<td>-</td>
<td>18.05 ± 1.21%</td>
<td>-</td>
<td>65 (47-77)</td>
<td>12%</td>
<td>28%</td>
<td>15%</td>
<td>0.06</td>
</tr>
<tr>
<td>Bay Area Men's Health Study</td>
<td>CA 82</td>
<td>36</td>
<td>19.06 ± 1.52%</td>
<td>20.13 ± 2.15%</td>
<td>64 (44-78)</td>
<td>25%</td>
<td>94%</td>
<td>28%</td>
<td>1.16</td>
</tr>
<tr>
<td>Genomics Collaborative</td>
<td>All U.S. 47</td>
<td>-</td>
<td>16.16 ± 1.51%</td>
<td>-</td>
<td>62 (39-81)</td>
<td>14%</td>
<td>38%</td>
<td>28%</td>
<td>0.57</td>
</tr>
<tr>
<td>Combined samples</td>
<td>1,597</td>
<td>873</td>
<td>22.11 ± 0.36%</td>
<td>25.32 ± 0.55%</td>
<td>65 (39-88)</td>
<td>21%</td>
<td>29%</td>
<td>18%</td>
<td>7.14</td>
</tr>
</tbody>
</table>

Freedman et al., PNAS :14068 (2006)
Genetic position in centimorgans (Chromosome-Position)

LOD score (log base 10 of likelihood)

Chromosome 8 peak

Position on chromosome 8 (in megabases)

Probability density

3.8 Mb

Freedman et al., PNAS :14068 (2006)
A common variant associated with prostate cancer in European and African populations

Convergence of independent methods and data
Outline

- Whole genome admixture scan
- Fine mapping
- Work in progress
Ancestry is a proxy for the causal variant

Magnitude of association with CaP
Do deCODE variants fully explain ancestry risk in African American men?

- DG8S737
- and rs1447295

Causal variant? → Ancestry → CaP

Magnitude of association with CaP
Fine mapping identifies 3 regions contributing to PCa risk
7 alleles associated with CaP in a multiethnic cohort

<table>
<thead>
<tr>
<th>Marker</th>
<th>African American</th>
<th>Japanese American</th>
<th>Native Hawaiians</th>
<th>Latinos</th>
<th>European Americans</th>
<th>Pooled OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs13254738</td>
<td>1.24 (1.09-1.42)</td>
<td>1.57 (1.33-1.83)</td>
<td>1.46 (1.00-2.12)</td>
<td>1.25</td>
<td>1.11 (0.97-1.26)</td>
<td>1.26 (1.18-1.36)</td>
</tr>
<tr>
<td>rs6983561</td>
<td>1.34 (1.18-1.53)</td>
<td>1.78 (1.47-2.15)</td>
<td>3.17 (1.87-5.36)</td>
<td>1.99</td>
<td>1.16 (0.86-1.58)</td>
<td>1.51 (1.37-1.67)</td>
</tr>
<tr>
<td>Broad11934905</td>
<td>2.45 (1.65-3.62)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.45 (1.65-3.62)</td>
</tr>
<tr>
<td>rs6983267</td>
<td>1.43 (1.17-1.75)</td>
<td>1.22 (1.05-1.42)</td>
<td>1.29 (0.88-1.89)</td>
<td>1.05</td>
<td>1.13 (0.99-1.28)</td>
<td>1.18 (1.09-1.27)</td>
</tr>
<tr>
<td>rs7000448</td>
<td>1.33 (1.12-1.58)</td>
<td>1.23 (1.04-1.46)</td>
<td>1.38 (0.89-2.14)</td>
<td>1.29</td>
<td>1.14 (0.93-1.40)</td>
<td>1.26 (1.15-1.38)</td>
</tr>
<tr>
<td>DG8S737-8</td>
<td>1.25 (1.06-1.49)</td>
<td>1.48 (1.16-1.88)</td>
<td>2.55 (1.33-4.89)</td>
<td>1.46</td>
<td>1.45 (0.96-2.19)</td>
<td>1.39 (1.23-1.57)</td>
</tr>
<tr>
<td>rs10090154</td>
<td>1.11 (0.94-1.32)</td>
<td>1.49 (1.23-1.81)</td>
<td>2.54 (1.61-4.02)</td>
<td>1.98</td>
<td>1.44 (1.17-1.76)</td>
<td>1.43 (1.30-1.58)</td>
</tr>
</tbody>
</table>
Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24

Meredith Yeager1,2, Nick Orr3, Richard B Hayes2, Kevin B Jacobs4, Peter Kraft5, Sholom Wacholder2,

Multiple regions within 8q24 independently affect risk for prostate cancer

Christopher A Haiman1, Nick Patterson2, Matthew L Freedman2,3, Simon R Myers2, Malcolm C Pike1,
Alicja Waliszewska2,4,5, Julie Neubauer2,4, Arti Tandon2,4, Christine Schirmer2,4, Gavin J McDonald2,4,
Steven C Greenway4, Daniel O Stram1, Loic Le Marchand6, Laurence N Kolonel6, Melissa Frasco1,
David Wong1, Lorell C Pooler1, Kristin Ardlie2,7, Ingrid Oakley-Girvan8,9, Alice S Whittemore9,
Kathleen A Cooney10,11, Esther M John8,9, Sue A Ingles1, David Altshuler2,4,12,13,
Brian E Henderson1 & David Reich2,4
Summary: Fine mapping

- Multiple alleles contributing risk in a noncoding region
 - Population attributable risk is large across populations

- Power of studying multiple ethnicities

- Most risk alleles are shared across populations
 (although this is also what we are most powered for)

- MYC is closest gene
QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
Outline

- Whole genome admixture scan
- Fine mapping
- Work in progress
Now what??

Sequence

Function
Sequencing - ascertain all variation across three regions

- N=48 - across 3 ethnic groups

- Newly discovered and poorly tagged variants will be tested in larger multiethnic cohort
What is the mechanism of risk?

- Possible hypotheses
 - structurally unstable
 - unannotated transcript
 - tiling arrays
 - promoter/enhancer
 - tiling arrays
 - chromatin markers
Hypothesis: structural instability

Are the 8q24 risk alleles associated with somatic 8q amplification?

Being performed on 140 paired normal/tumor samples from the DFCI/Gelb center
Tiling arrays

A tiling array is an array that "tiles" oligos across a given region so that it can be interrogated at ultra-high resolution.

We tiled a 5 megabase region at 8q24 with a mean probe spacing of 8bp.

Analyzed cDNA and acetylation.
LnCaP + 20 prostate tissues

Expression of RNA transcripts

Reverse transcribe

Hybridize cDNA

8q24.21 (15kb)

Oligo probes

Expressed transcripts

exon exon exon
Blow-up of region - MYC
Transcriptional landscape of 8q24
New transcripts in risk region

Confirmed by RT-PCR in prostate tissue
Currently performing 5' RACE to fully characterize Pseudogene
8q24 regions are bear marks of enhancers

Jerome Eekhoute and Mathieu Lupien
Future directions: what is the region enhancing?

- How is 8q24 influencing expression?
 - Directed
 - 12 transcripts
 - 150 histologically normal prostate samples
 - Unbiased
 - Chromosome Conformation Capture

Expression level

Genotype

AA AB BB

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.
Acknowledgements

Harvard/Broad
David Reich
Nick Patterson
Simon Myers
Julie Neubauer
Christine Schirmer
Arti Tandon
Gavin McDonald
Neil Hattangadi
Alicja Waliszewska
Kristin Ardlie
David Altshuler

DFCI
Mark Pomerantz
Kathryn Penney
Christine Beckwith
Phil Kantoff
Oliver Sartor
William Oh
Jerome Eekhoute
Mathieu Lupien
Myles Brown

Stanford
Alice Whittemore

NCCC
Ingrid Oakley-Givran
Esther John

University of Michigan
Kathy Cooney

CPDR
David McLeod
Shiv Srivastava
Albert Dobi
Jennifer Cullen

USC
Brian Henderson
Chris Haiman
Dan Stram
Sue Ingles
Malcolm Pike
8q24 variants and clinical parameters

Kathryn Penney and Mark Pomerantz

<table>
<thead>
<tr>
<th></th>
<th>PHS (n=598)</th>
<th>DFCI aggressive (n=762)</th>
<th>DFCI RP (n=500)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age at diagnosis (mean)</td>
<td>(n=598) 68.5</td>
<td>(n=734) 62.2</td>
<td>(n=459) 56.7</td>
</tr>
<tr>
<td>PCa deaths/ long term survivors</td>
<td>156/396</td>
<td>277/168</td>
<td>---</td>
</tr>
<tr>
<td>Gleason score</td>
<td>(n=490) <7 51.4</td>
<td>(n=684) 17.8</td>
<td>(n=460) 41.5</td>
</tr>
<tr>
<td></td>
<td>7 32.9</td>
<td>32.7</td>
<td>51.1</td>
</tr>
<tr>
<td></td>
<td>>7 15.7</td>
<td>49.4</td>
<td>7.4</td>
</tr>
<tr>
<td>PSA at diagnosis*</td>
<td>(n=221) 9.1</td>
<td>(n=414) 11.0</td>
<td>(n=426) 5.0</td>
</tr>
<tr>
<td>Pathologic stage</td>
<td>---</td>
<td>---</td>
<td>(n=454) 85.9</td>
</tr>
<tr>
<td></td>
<td>T1-T2</td>
<td>T3-T4</td>
<td></td>
</tr>
</tbody>
</table>

PSA at diagnosis does not include individuals who were diagnosed with metastases
8q24 and PCa mortality

Kathryn Penney and Mark Pomerantz

N=433 PCa deaths and N=564 > 10 year survivors
Adjusted for age at diagnosis and cohort