The NIH Chemical Genomics Center

Bringing Biopharmaceutical Technologies to Academic Chemical Biology and Drug Discovery

Christopher P. Austin, M.D.
Director, NIH Chemical Genomics Center
National Institutes of Health

Visit of UK House of Lords
4 June 2008
How to translate the genome into biological insights and therapeutics?
The “Non-Druggable” Genome Problem

Drug Target Classes

Human Genome

GPCRs

Enzymes

Other

Ion Channels

Unknown

Venter et al., (2001) Science 291:1304
Molecular Libraries and Imaging

OVERVIEW

Small molecules, often with molecular weights of 500 or below, have proven to be extremely important to researchers to explore function at the molecular, cellular, and in vivo level. Such molecules have also been proven to be valuable for treating diseases, and most medicines marketed today are from this class.

“...To empower the research community to use small molecule compounds in their research, whether as tools to perturb genes and pathways, or as starting points to the development of new therapeutics for human disease.”
The Molecular Libraries Roadmap: An Integrated Initiative

- Technology Development
 - Chemical Diversity
 - Assay Development
 - Instrumentation
 - Predictive ADMET

- Data Production
 - Molecular Libraries Screening Centers Network (MLSCN)

- Data Analysis/Dissemination
 - Compound Repository (MLSMR)
 - Cheminformatics Research Centers

- PubChem
Unique features of the MLSCN

- All Centers screen same compound collection
 - Allows comparison of compounds’ activities in many assays
- Capability to screen very wide variety of assay types
- Medicinal chemistry to transform hits into probes
 - Chemical probes of gene, pathway, and cell functions
- Data are released without restriction
 - *PubChem*. Screening data
 - *Probe reports*. activity, SAR, purity, compound source data
 - Enabling for all researchers to use probes and compute on the data
 - Sharing is catalytic to the transformation of data into information
New Highlights & Resources!

MLSCN Symposium at the April 6, 2008 SBS Meeting in St. Louis, MO
Click here for more information on the MLSCN Symposium: NIH Roadmap Molecular Libraries Screening Centers Network: A Resource for the Research Community.

Probe Development Opportunities
- Solicitation of Assays for HTS in the Molecular Libraries Probe Production Centers Network (MLPCN) (R03) PAR-08-034
- Solicitation of Assays for HTS in the Molecular Libraries Probe Production Centers Network (MLPCN) (R03) PAR-08-038

Assay Development Opportunities
- Assay Development for High Throughput Molecular Screening (R21) PAR-08-624
- Development of Assays for High-Throughput Drug Screening (RO1) PAR-07-326

Compound Solicitation for High Throughput Screening in the MLSCN
Solicitation of Compounds for High Throughput Screening (HTS) in the MLSCN

Probe Production Centers
MLSMR Compound Collection
(260,000 Compounds)

DC = Diversity Compounds
NC = Non-commercial
TL-KIN = Kinase Targeted Library
TL-GPCR = GPCR Targeted Library
TL-IC = Ion Channel Targeted Library
TL-PRO = Protease Targeted Library
TL-NUC = Nuclear Receptor Targeted
TL-NTP = National Toxicology Program
SS = Known Bioactives
NP = Natural Products
DEA = DEA Controlled Substances
NIH Chemical Genomics Center

- Founded 2004
- 54 scientists – biologists, chemists, informaticians, engineers
- Collaborates with >100 investigators worldwide
 - 60% NIH extramural
 - 25% NIH intramural
 - 15% Foundations, Research Consortia
- Focus on novel targets, rare and orphan diseases
 - Equal number of projects for basic research chemical probes and starting points for disease drug development
NIH Chemical Genomics Center: Founding Principles

- Bring the best of the **technologies, equipment, experience, and people** from pharma and biotech, and apply them to the 95% of the genome and 95% of human diseases not worked on by biopharma
- **Scale** must be equal to or greater than a pharma
- **Automate** everything
 - Cheaper, faster, more accurate
 - Allows recruitment and retention of finest scientists
- **Collaborate** extremely widely
- **Produce** chemical probes of demonstrated biological utility
 - Requires major Medicinal Chemistry presence
NCGC Staff May 2008

- Amphora
- CELERA
- Pfizer
- HGS
- NORTHROP GRUMMAN
- ARQULE
- AMGEN
- Caliper LifeSciences
- MERCK
- gsk
- Johnson & Johnson
- Pharmacopeia
- BD Biosciences

- Scientific and Admin Management, 6
- Lab Operations, 2
- Automation and Cmd Mgt, 6
- Chemistry, 15
- Assay Development and Biology, 18
- Informatics, 7
Adequate potency and solubility?

YES

NO

Optimizing Assay

Compound Repository

Bioassay

Screen Data

Candidate Probe

Optimization Chemistry

Advice

Peer review

Assay

Investigator

PubChem
Disease areas of NCGC projects 2005-2007

- Genetic Diseases: 5%
- Metabolic Diseases: 5%
- Toxicology: 7%
- Neuroscience: 8%
- Infectious Diseases: 11%
- Cancer: 23%
- Basic Research: 36%
- Other: 5%
Establishing a paradigm for chemical genomics

For each assay, **efficiently** and **comprehensively** describe the biological activity of a chemical library

1. Direct us toward chemical series:
 - suitable probes
 - probe potential
 - SAR for probe optimization

2. Populating a “Chemical Genomics” database
 - reliable activity of all library members for all assays that are screened at NCGC
 - → useful for profiling actives against all subsequent assays
Quantitative high-throughput screening (qHTS)

- Conventional HTS: done at one concentration (typically 10 uM)
- qHTS: All compounds tested in titration
 - 15 concentrations
 - Concentration range 0.5 nM to 92 uM
 - Concentration-response curve generated for each compound
- Assay volumes ~5 uL
- 1536-well plate format
- Informatics pipeline for data processing, curve fitting & classification
- Higher quality data
qHTS curve classification criteria

<table>
<thead>
<tr>
<th>Curve Class</th>
<th>Description</th>
<th>Efficacy</th>
<th>r^2</th>
<th>Asymptotes</th>
<th>Inflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1*</td>
<td>Complete curve (a)</td>
<td>> 80% (a)</td>
<td>≥ 0.9</td>
<td>2</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td>Partial curve (b)</td>
<td>≤ 80% (b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2†</td>
<td>Incomplete curve</td>
<td>> 80% (a)</td>
<td>> 0.9 (a)</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 80% (b)</td>
<td>< 0.9 (b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Single pt activity</td>
<td>> Min‡</td>
<td>NA</td>
<td>1</td>
<td>no</td>
</tr>
<tr>
<td>4</td>
<td>Inactive</td>
<td>NA</td>
<td>NA</td>
<td>0</td>
<td>no</td>
</tr>
</tbody>
</table>

NOTES: *AC$_{50}$ derived from data; †AC$_{50}$ extrapolated from data; ‡Min is > 3 SD from the mean activity of the sample field at the highest tested concentration

Examples

Lower confidence data
Derivation of nascent SAR from qHTS

- Class 1 and 2a – Hierarchical clustering
 - Leadscope fingerprints
 - Tanimoto cutoff = 0.7
 - 55 clusters
- Maximal common substructure (MCS) extracted for each cluster
 - MCS used to search entire screening collection
 - 40 series composed of 4-25 active analogs
 - Results associated with biological data
Classes 1a, b and 2 → 12 cpds
Cluster 5, 2-phenyloxazole-4-carbonitrile
Class 1a, b and 2 ► 12 cpds

Class 2b and 3 ► 8 cpds

Class 4 ► 16 cpds
Classes 1a, b and 2 ▶ 12 cpds, Cluster 5
Structure-Activity Relationship (SAR) Report

- The SAR report is a ‘map’ to enabling chemical optimization of a lead series.

<table>
<thead>
<tr>
<th>#</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>NCGC ID</th>
<th>Curve Class</th>
<th>Rank</th>
<th>AC50 (uM)</th>
<th>Act Max Conc</th>
<th>hill Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NH₂</td>
<td>R₂O-CH₂Cl</td>
<td>H</td>
<td>NCGC00067413.01</td>
<td>1.1</td>
<td>1/20</td>
<td>0.08</td>
<td>.92</td>
<td>1.1</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>R₂O-CN</td>
<td>H</td>
<td>NCGC00067270-01</td>
<td>1.1</td>
<td>5/20</td>
<td>1.9</td>
<td>.93</td>
<td>1.1</td>
</tr>
<tr>
<td>10</td>
<td>H</td>
<td>R₂O-CN</td>
<td>H</td>
<td>NCGC00067494-01</td>
<td>2.1</td>
<td>12/20</td>
<td>4.5</td>
<td>.96</td>
<td>1.4</td>
</tr>
<tr>
<td>21</td>
<td>F</td>
<td>H</td>
<td>H</td>
<td>NCGC00023889-01</td>
<td>3</td>
<td>20/20</td>
<td>42</td>
<td>-32</td>
<td>1.6</td>
</tr>
<tr>
<td>30</td>
<td>H</td>
<td>F</td>
<td>H</td>
<td>NCGC00039456-01</td>
<td>4</td>
<td>inactive</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>H</td>
<td>Cl</td>
<td>H</td>
<td>NCGC00052762.01</td>
<td>4</td>
<td>inactive</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Electronic counterscreens across >100 assays

Active Chemical Series For Kinase Assay

Series 1

Series 2

Series 3

$X = [O, S, \text{or } N]$

~300,000

~300,000
NCGC Chemical Genomics Browser
NCGC Stats

- 174 Assays deposited in PubChem (since Feb05)
- Wells tested: 42.5 million
 - Number of data points: 302 million
- Concentration-response (CR) profiles: 4.4 million
 - Data fields deposited into PubChem: >40M
- 32 probe projects / 34 probes/33 publications
- Screening throughput 2.5 million wells/wk
Case Study: Development of Inhibitors of *Schistosoma mansoni* Peroxiredoxins

NCGC Collaboration with David Williams
Department of Biological Sciences
Illinois State University, Normal, IL
Schistosomiasis

- 250,000,000 infections
- 20,000,000 with significant pathology
- 280,000 deaths/year
- Major cause of morbidity
- Endemic in 75 countries
- > 80% infections in sub-Saharan Africa
Targeted Redox Pathway

Humans have three enzymes that degrade hydrogen peroxide made from superoxide radicals.

\[
\begin{align*}
\text{O}_2 & \rightarrow \text{O}_2^{*-} \\
& \xrightarrow{\text{Superoxide dismutase}} \text{H}_2\text{O}_2 \\
& \xrightarrow{\text{Catalase}\ \text{Glutathione peroxidase}\ \text{Peroxiredoxin}} \text{H}_2\text{O}
\end{align*}
\]

\[
\text{OH}^{*} / \text{OCl}^{-} \rightarrow \text{tissue damage death}
\]
Targeted Redox Pathway

- *S. mansoni* has no catalase or glutathione peroxidase.
- Survives in humans due to parasite-specific peroxiredoxin that degrades reactive oxygen species produced by human innate immune response.
Targeted Redox Pathway

Inhibition of *S. mansoni* peroxiredoxin would prevent worm degradation of hydrogen peroxide and kill schistosomes.
The disulfide redox system of *Schistosoma mansoni* and the importance of a multifunctional enzyme, thioredoxin glutathione reductase☆

Heather M. Alger, David L. Williams *

Department of Biological Sciences, Illinois State University, Normal, IL 61790-4120, USA

Received 26 December 2001; accepted in revised form 8 February 2002
Identification of Target: 2006

Thioredoxin Glutathione Reductase from *Schistosoma mansoni*: An Essential Parasite Enzyme and a Key Drug Target

Angela N. Kuntz, Elisabeth Davioud-Charvet, Ahmed A. Sayed, Lindsay L. Califf, Jean Dessolin, Elias S. J. Arner, and David L. Williams

1 Department of Biological Sciences, Illinois State University, Normal, Illinois, United States of America, 2 Biochemie-Zentrum der Universität Heidelberg, Heidelberg, Germany, 3 Centre National de la Recherche Scientifique (CNRS), Paris, France, 4 Institut Européen de Chimie et Biologie, CNRS UMR 5144, Bordeaux University, Pessac Cedex, France, 5 Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden

Figure 8. Photomicrographs (100×) of Irrelevant dsRNA-Treated Schistosomula (left image) and TGR dsRNA-Treated Schistosomula (right image) after Three Days of Treatment

All organisms in the left image are alive; parasites have different shapes, elongated, contracted, and curved during movement. In the right image, all of the parasites are dead and have roughly the same shape (no movement) and internal vacuoles (arrows). The bar represents 250 μm. doi:10.1371/journal.pmed.0040206.g008
Quantitative HTS: 2007

- 70,000 compounds at 7 concentrations (qHTS)
 - Dose-response curve for all compounds (PNAS 103, 11473-8 (2006))
 - ~10,000,000 data points (16 Time-Point Reads)
 - 31 hours of robot time
- Results: 100 compounds with IC50 < 40 µM
 - 71 compounds
 - 6 different structural classes
Quantitative High-Throughput Screen Identifies Inhibitors of the *Schistosoma mansoni* Redox Cascade

Anton Simeonov¹, Ajit Jadhav¹, Ahmed A. Sayed², Yuhong Wang¹, Michael E. Nelson¹, Craig J. Thomas¹, James Inglese¹, David L. Williams²*, Christopher P. Austin¹*

¹ NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America, ² Department of Biological Sciences, Illinois State University, Normal, Illinois, United States of America

Abstract

Schistosomiasis is a tropical disease associated with high morbidity and mortality, currently affecting over 200 million people worldwide. Praziquantel is the only drug used to treat the disease, and with its increased use the probability of developing drug resistance has grown significantly. The *Schistosoma* parasites can survive for up to decades in the human host due in part to a unique set of antioxidant enzymes that continuously degrade the reactive oxygen species produced by the host’s innate immune response. Two principal components of this defense system have been recently identified in *S. mansoni* as thioredoxin/glutathione reductase (TGR) and peroxiredoxin (Prx) and as such these enzymes present attractive new targets for anti-schistosomiasis drug development. Inhibition of TGR/Prx activity was screened in a dual-enzyme format with reducing equivalents being transferred from NADPH to glutathione via a TGR-catalyzed reaction and then to hydrogen peroxide via a Prx-catalyzed step. A fully automated quantitative high-throughput (qHTS) experiment was performed against a collection of 71,028 compounds tested as 7- to 15-point concentration series at 5 μL reaction volume in 1536-well plate format. In order to generate a robust data set and to minimize the effect of compound autofluorescence, apparent reaction rates derived from a kinetic read were utilized instead of end-point measurements. Actives identified from the screen, along with previously untested analogues, were subjected to confirmatory experiments using the screening assay and subsequently against the individual targets in secondary assays. Several novel active series were identified which inhibited TGR at a range of potencies, with IC₅₀ ranging from micromolar to the assay response limit (~25 nM). This is, to our knowledge, the first report of a large-scale HTS to identify lead compounds for a helminthic disease, and provides a paradigm that can be used to jump-start development of novel therapeutics for other neglected tropical diseases.
Identification of oxadiazoles as new drug leads for the control of schistosomiasis

Ahmed A Sayed1, Anton Simeonov2, Craig J Thomas2, James Inglese2, Christopher P Austin2 & David L Williams1

1Department of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA. 2NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892-3370, USA. Correspondence should be addressed to D.L.W. (dwilliam@illinois.edu) or C.P.A. (astinmel@nih.gov).
BioAssay Summary:

- **Name:** Schistosoma Mansoni Peroxiredoxins (Pnx2).
- **Data Source:** NCGC (prx2)
- **Activity Outcome Method:** Confirmatory, Concentration-Response Relationship Observed

BioAssay Results:

- Data Table (Active Substances)
- Data Table (All Substances)

BioActive Compounds:

- BioActivity Summary
- Structure-Activity Analysis
- Structure Clustering

Related BioAssays:

- Target Similarity (1)
- Activity Overlap (159)

Description:

NIH Molecular Libraries Screening Centers Network [MLSCN]
NIH Chemical Genomics Center [NCGC]
David Williams [Illinois State University]

NCGC Assay Overview:

Schistosoma mansoni, a causative agent of schistosomiasis, resides in the bloodstream of their host up to 30 years without being eliminated by the host immune attack. One proposed survival mechanism is the production of an antioxidant "firewall" that neutralizes the oxidative assault of the host's immune attack. Schistosoma mansoni peroxiredoxins are important parasite antioxidant proteins that play a crucial role in redox balance mechanisms. Data strongly suggest the possible use of Pnx as novel drug targets. First, the proteins are essential for the parasite survival. Second, the proteins exhibit sufficient biochemical
BioActivity Analysis: 1 BioAssay and 63787 Compounds

Summary

AID: 448
Total BioAssay Result Count: 63787

Data Table

<table>
<thead>
<tr>
<th>#</th>
<th>Structure</th>
<th>SID</th>
<th>CID</th>
<th>Score</th>
<th>Outcome</th>
<th>Activity Direction</th>
<th>Activity Qualifier</th>
<th>Qualified AC50</th>
<th>Log of AC50</th>
<th>Hill Coefficient</th>
<th>Curve R2</th>
<th>Data Type</th>
<th>Compound QC</th>
<th>Data Analysis QC</th>
<th>NCCG Comment</th>
<th>Curve Fit Model</th>
<th>Hill S0</th>
<th>Hill Sinf</th>
<th>Hill JS</th>
<th>Log AC50 Std Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>3715577</td>
<td>2311082</td>
<td>74</td>
<td>Active</td>
<td>decreasing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Primary</td>
<td>Verified</td>
<td>Full Curve</td>
<td></td>
<td>Spline (AC50, n, Sinf)</td>
<td></td>
<td>-77</td>
<td>77</td>
<td>-0.116</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>11110989</td>
<td>1732</td>
<td>84</td>
<td>Active</td>
<td>decreasing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Primary</td>
<td>Verified</td>
<td>Full Curve</td>
<td></td>
<td>Spline (AC50, n, Sinf)</td>
<td></td>
<td>-81</td>
<td>81</td>
<td>0.022</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>42534159</td>
<td>16683706</td>
<td>63</td>
<td>Active</td>
<td>decreasing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Primary</td>
<td>Verified</td>
<td>Full Curve</td>
<td></td>
<td>Spline (AC50, n, Sinf)</td>
<td></td>
<td>-82</td>
<td>82</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0573902</td>
<td>059226</td>
<td>63</td>
<td>Active</td>
<td>decreasing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Primary</td>
<td>Verified</td>
<td>Full Curve</td>
<td></td>
<td>Spline (AC50, n, Sinf)</td>
<td></td>
<td>-70</td>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>
Full Concentration-Response

<table>
<thead>
<tr>
<th>Compound Type</th>
<th>Activity at 0.096μM (%)</th>
<th>Activity at 0.288μM (%)</th>
<th>Activity at 0.576μM (%)</th>
<th>Activity at 1.152μM (%)</th>
<th>Activity at 2.304μM (%)</th>
<th>Activity at 4.608μM (%)</th>
<th>Activity at 9.216μM (%)</th>
<th>Activity at 18.432μM (%)</th>
<th>Activity at 36.864μM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>qHTS MLSMR</td>
<td>-81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qHTS CCL - Sigma & Birch</td>
<td>-94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qHTS CCL - NCI</td>
<td>-96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qHTS MLSMR</td>
<td>-72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qHTS MLSMR</td>
<td>-94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>qHTS MLSMR</td>
<td>-72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of Points</th>
<th>7</th>
<th>15</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity at 0.752μM (%)</td>
<td>2</td>
<td>-4</td>
<td>1</td>
</tr>
<tr>
<td>Activity at 1.505μM (%)</td>
<td>-9</td>
<td>-3</td>
<td>0</td>
</tr>
<tr>
<td>Activity at 3.010μM (%)</td>
<td>-72</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Activity at 6.020μM (%)</td>
<td>-81</td>
<td>-4</td>
<td>-97</td>
</tr>
<tr>
<td>Activity at 12.040μM (%)</td>
<td>-66</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Activity at 24.080μM (%)</td>
<td>-91</td>
<td>-5</td>
<td>-78</td>
</tr>
<tr>
<td>Activity at 48.160μM (%)</td>
<td>-81</td>
<td>-6</td>
<td>-79</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound Type</th>
<th>Activity at 0.057μM (%)</th>
<th>Activity at 0.114μM (%)</th>
<th>Activity at 0.228μM (%)</th>
<th>Activity at 0.456μM (%)</th>
<th>Activity at 0.912μM (%)</th>
<th>Activity at 1.824μM (%)</th>
<th>Activity at 3.648μM (%)</th>
<th>Activity at 7.296μM (%)</th>
<th>Activity at 14.592μM (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>qHTS MLSMR</td>
<td>-81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SGC Collaboration: Chemical Probes of Gene Families

• Discussions started 4Q 2004 (Edwards)
• Dehydrogenases (SGC-Oxford) chosen as first targets, enzymes received 1Q 2006
 – 4 enzymes screened against the full collection
• Collaboration expanded 2Q 2007 to new targets from all SGC sites
• Epigenetics collaboration begun 4Q 2007
 – Joint application to WT submitted last week
• NCGC PIs
 – Anton Simeonov
 – Doug Auld (Human PK)
High Content Scaffold ‘Family’ Profiling of SGC Target Families

<table>
<thead>
<tr>
<th>SGC</th>
<th>p450 profiling</th>
<th>Other NCGC assays</th>
</tr>
</thead>
</table>

- Aminoquinazolines

![Aminoquinazolines](image)
High Content Scaffold ‘Family’ Profiling of SGC Target Families

SGC | p450 profiling | Other NCGC assays

Aminoquinazolines

hpgd selective
IC50 = 0.11 uM
High Content Scaffold ‘Family’ Profiling of SGC Target Families

Aminoquinazolines

hpgd selective IC\textsubscript{50} = 0.11 \textmu M

SGC p450 profiling Other NCGC assays

aldh1a1 selective IC\textsubscript{50} = 1.4 \textmu M
High Content Scaffold ‘Family’ Profiling of SGC Target Families

SGC p450 profiling Other NCGC assays

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>hpgd IC50</td>
<td>0.11 μM</td>
</tr>
<tr>
<td>Aldh1a1 IC50</td>
<td>1.4 μM</td>
</tr>
</tbody>
</table>

Fluorescent compound

Aminoquinazolines
High Content Scaffold ‘Family’ Profiling of SGC Target Families

Profile across all bioactivity, spectroscopic properties, aggregation assay platforms

Aminoquinazolines
High Content Scaffold ‘Family’ Profiling of SGC Target Families

<table>
<thead>
<tr>
<th>SGC</th>
<th>p450 profiling</th>
<th>Other NCGC assays</th>
</tr>
</thead>
</table>

- Profiles mined for each scaffold tested, known drugs, etc

- Annotated assays organized by: biological relationships, assay platform, or activity profiles

![Aminoquinazolines](image)

- Aminoquinazolines
High-throughput screening assays for the identification of chemical probes

James Inglese, Ronald L Johnson, Anton Simeonov, Menghang Xia, Wei Zheng, Christopher P Austin & Douglas S Auld

High-throughput screening (HTS) assays enable the testing of large numbers of chemical substances for activity in diverse areas of biology. The biological responses measured in HTS assays span isolated biochemical systems containing purified receptors or enzymes to signal transduction pathways and complex networks functioning in cellular environments. This Review addresses factors that need to be considered when implementing assays for HTS and is aimed particularly at investigators new to this field. We discuss assay design strategies, the major detection technologies and examples of HTS assays for common target classes, cellular pathways and simple cellular phenotypes. We conclude with special considerations for configuring sensitive, robust, informative and economically feasible HTS assays.

Reporting data from high-throughput screening of small-molecule libraries

James Inglese, Caroline E Shamu & R Kiplin Guy

Publications reporting results of small-molecule screens are becoming more common as academic researchers increasingly make use of high-throughput screening (HTS) facilities. However, no standards have been formally established for reporting small-molecule screening data, and often key information important for the evaluation and interpretation of results is omitted in published HTS protocols. Here, we propose concise guidelines for reporting small-molecule HTS data.
NIH Chemical Genomics Center
Free software and code for public use

NCGC CurveFit

Large scale dose response curve fitting and curve classification software

Download: Application. (requires Java WebStart)
Download: Sample Data File.
Download: Source Code.

Software Features
- Automated curve fitting and classification software
- Algorithm recognizes bell shaped curves, implements standard Hill equation, extensible for other models; distinguishes activation vs inhibition
- Stand alone tool designed explicitly for public use and for source code reference
- Analyzes 10k curves with good performance, capacity to handle >100k curves with memory usage on user machine being the limit
- Provides activity ranking of complete and incomplete curves
- Fast chemical similarity and substructure searching (including smarts support) enabled using path-based fingerprints
- Ability to export results, curve images
- Web deployed software, keeps users current with latest features
Table of Contents

Copyright © 2005, Eli Lilly and Company and the National Institutes of Health Chemical Genomics Center. All Rights Reserved. For more information, please review the Privacy Policy and Site Usage and Agreement.

SECTION I: INTRODUCTION
A. INTRODUCTION

SECTION II: TRANSFER OF VALIDATED ASSAYS
A. OVERVIEW
B. TWO-DAY PLATE UNIFORMITY AND SIGNAL VARIABILITY ASSESSMENT
 • Plate layouts
 • Summary Calculations
 • Signal Window and Z-Factor Formulas
 • Signal to Background and Signal to Noise
 • Plate Uniformity Assessment
 • Inter-Plate and Inter-Day Tests
 • Summary of Acceptance Criteria
 • Higher Plate Density Formats
C. CONFIRMATION AND REPRODUCIBILITY OF POTENCY AND EFFICACY VALUES
 • Two Days of Assay End Points (Potency / Efficacy) for Selected Compounds
 • Rationale
 • Procedure for Estimating Variability (Steps)
 • Analysis (Potency)
 • Diagnostic Tests (Potency)
 • Analysis (Efficacy)
 • Diagnostic Tests (Efficacy)
 • Summary of Acceptance Criteria
 • Notes
D. HOW TO DEAL WITH HIGH ASSAY VARIABILITY
E. STABILITY AND PROCESS STUDIES
 • Reagent Stability and Storage Requirements
Probes are just the start of drug development

- Public Sector Science Pre-MLI
- Probability of success
- Cumulative Cost

- 1 yr 1 yr 1 yr ~3 yrs 1 yr 2 yrs ~3 yrs 1.5 yrs Indefinite
 - Target identification
 - Assay development
 - Screening (HTS or otherwise)
 - Hit-to-Probe
 - Dedicated Chem-Biol Project Team formed
 - Compound accepted into Clinical Development
 - Lead Development, Optimization
 - Ph I Ph II Ph III
 - Clinical Trials
 - Regulatory review
 - Ph IV-V (Additional indications, Safety monitoring)
Probes are just the start of drug development

- **Target identification**
- **Assay development**
- **Screening (HTS or otherwise)**
- **Hit-to-Probe**
- **Lead Development, Optimization**
- **Ph I (Safety)**
- **Ph II (Dose finding, initial efficacy in patient pop.)**
- **Ph III (Efficacy and safety in large populations)**
- **Regulatory review**
- **Ph IV-V (Additional indications, Safety monitoring)**

Cumulative Cost

Probability of success

Public Sector Science with MLI

- Dedicated Chem-Biol Project Team formed
- Compound accepted into Clinical Development

- Lead Development, Optimization
- Ph I (Safety)
- Ph II (Dose finding, initial efficacy in patient pop.)
- Ph III (Efficacy and safety in large populations)
- Regulatory review
- Ph IV-V (Additional indications, Safety monitoring)
The NIH Chemical Genomics Center

Biology
- Doug Auld
- Wei Zheng
- Anton Simeonov
- Ron Johnson
- Menghang Xia
- Ya-Qin Zhang
- Pingjun Zhu
- Henrike Veith
- Steve Titus
- Michelle Cho
- Lena Schultz
- Jennifer Wichterman
- Natasha Thorne\(^a\)
- Ke Liu\(^a\)
- Sunita Shukla\(^a\)
- Wendy Lea\(^a\)
- Masaaki Sakura\(^b\)
- Sean Jeffries\(^c\)

Informatics
- Ajit Jadhav
- Yuhong Wang
- Noel Southall
- Ruili Huang
- Joe Talafous
- Ryan MacArthur
- Trung Nguyen

Engineering-Compound Mgt.
- Sam Michael
- Adam Yasgar
- Paul Shinn
- Carleen Klumpp
- Jean Dehdashti

Outreach
- Allison Peck

Management
- Chris Austin
- Jim Inglese

Chemistry
- Craig Thomas
- Bill Leister
- Wenwei Huang
- Dave Maloney
- Juan Marugan
- Jack Jiang
- Bryan Mott
- Jeremy Smith
- Anjali Bain
- Chris Leclair\(^a\)
- Amanda Skoumbourdis\(^a\)
- Ganesha Bantukallu\(^a\)
- Will Maguire\(^d\)
- Liz Cline\(^d\)

Administration
- Denise Philippi
- Mike Philippi
- Cathy Anzick
- Julius Ofiaza
- Peggy McClelland

\(^a\)Posdoc
\(^b\)Visiting Fellow
\(^c\)Grad student
\(^d\)IRTA

NIH Roadmap for Medical Research and the Intramural program of the NHGRI
More Information

austinc@mail.nih.gov

www.NCGC.nih.gov

www.MLI.nih.gov