Endoglin has a crucial role in blood cell-mediated vascular repair

Linda van Laake

Heart Lung Center Utrecht, Cardio-Thoracic Surgery / Cardiology

Netherlands Institute for Developmental Biology (Hubrecht Laboratory)

NIH workshop – HHT Bethesda, 8th June 2006
Background

- **Endoglin**: accessory receptor for TGF-β in vascular endothelial cells (EC)
 - Essential for angiogenesis (mouse development)
- **Hereditary hemorrhagic telangiectasia type 1 (HHT1)**: mutations endoglin gene
 - Vascular malformations increasing with age
 - Haploinsufficiency
 - Clinical manifestations variable
Background

- Mononuclear cells (MNCs) can express endoglin
 - Endothelial progenitor cells, circulating EC, bone marrow monocytic lineages
- MNCs contribute to vascular repair
 - Transdifferentiation to EC; vasculogenesis
 - Secretion growth factors and cytokines; angiogenesis
Hypothesis

• Vascular repair, mediated by MNCs, may be impaired in subjects with HHT1

• Model
 – HHT1 patients and mice for endoglin mutation
 – Myocardial infarction (MI) for angiogenesis and vasculogenesis
MI in mice

- Myocardial infarction or
- Sham thoracotony
- 4 week survival >60%
- Endoglin heterozygous mice ($Eng^{+/-}$)
- Wildtype littermates ($Eng^{+/+}$)
- Wildtype Balb/C
MNC injection

- Venous blood from HHT1 patients or healthy volunteers
MNC injection

• Venous blood from HHT1 patients or healthy volunteers
• Density gradient centrifugation → MNC population
• 1-3 hours after MI 5 million cells (or PBS) in tail vein
• Tacrolimus (Prograf®) for immunosuppression
Analysis

- Endoglin expression infarcted vs. healthy heart (human and mouse): ISH and IHC
Analysis

- Endoglin expression infarcted vs. healthy heart (human and mouse): ISH and IHC
- Homing human MNC to infarct: cryosections – UEA-1 lectin+FITC (4d)
Analysis

- Endoglin expression infarcted vs. healthy heart (human and mouse): ISH and IHC
- Homing human MNC to infarct: cryosections – UEA-1 lectin+FITC (4d)
- Vessel and inflammatory cell count: PECAM (1w, 2w, 4w), CD45, CD68, Mac-3 (1w)
Analysis

- Endoglin expression infarcted vs. healthy heart (human and mouse): ISH and IHC
- Homing human MNC to infarct: cryosections – UEA-1 lectin+FITC (4d)
- Vessel and inflammatory cell count: PECAM (1w, 2w, 4w), CD45, CD68, Mac-3 (1w)
- Heart function: mouse MRI (1w, 4w)
Ejection Fraction (EF) = \frac{(EDD-ESD)}{EDD}

Cardiac index = EF \times EDD \times \text{heart rate} / \text{weight}
Analysis

- Endoglin expression infarcted vs. healthy heart (human and mouse): ISH and IHC
- Homing human MNC to infarct: cryosections – UEA-1 lectin+FITC (4d)
- Vessel and inflammatory cell count: PECAM (1w, 2w, 4w), CD45, CD68, Mac-3 (1w)
- Heart function: mouse MRI (1w, 4w)
- Statistical analysis: Mann-Whitney U test
Endoglin expression

<table>
<thead>
<tr>
<th></th>
<th>Azan</th>
<th>endoglin mRNA</th>
<th>PECAM</th>
<th>endoglin protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infarct</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Endoglin upregulated in neoangiogenic vessels formed after MI (human and mouse)
Endoglin and neovascularization

Non-infarcted myocardium: no difference between \(\text{Eng}^{+/-} \) and \(\text{Eng}^{+/+} \)

- Reduced upregulation of endoglin and neoangiogenesis in \(\text{Eng}^{+/-} \) mice after MI
- CD45, CD68, Mac-3: no difference
• Neoangiogenesis defect in Eng+/− mice post-MI associated with impaired heart function
• Neoangiogenesis defect in Eng+/− mice post-MI associated with impaired heart function
• Partial rescue by injection of healthy MNCs
• HHT1-MNCs fail to stimulate neoangiogenesis and to accumulate in the infarct region of *Eng*+/+ mice
Conclusion

• Defective vascular repair –mediated by MNCs- is a significant component of the etiology of HHT1
• This may explain disease heterogeneity, since exposure to vascular damage or inflammation varies between patients
• In general, MNC characteristics in any patient may affect their efficiency of vascular repair
Acknowledgements

• Hubrecht Laboratory
 – Christine Mummery
 – Franck Lebrin
 – Sander van den Driesche
 – Alie Feijen
 – Mariette Driessens

• Heart Lung Center Utrecht
 – Pieter Doevendans
 – Marie-José Goumans
 – Simone Post
 – Maurits Jansen
 – Cees van Echteld

• St Antonius Hospital Nieuwegein
 – Cees Westerman
 – Repke Snijder
 – Johannes Mager

• Leiden University Medical Center
 – Peter ten Dijke

• University of Newcastle
 – Helen Arthur