Clinical Adoption of Pharmacogenomics

Implications for Educators and Providers

Aniwaa Owusu Obeng, PharmD

Assistant Professor
Icahn School of Medicine at Mount Sinai
The Charles Bronfman Institute for Personalized Medicine
Division of General Internal Medicine

Clinical Pharmacogenomics Coordinator
The Mount Sinai Hospital
Pharmacy Department

August 2nd, 2016
Objectives

• Describe the relevance of genomics to medical education and clinical care by using a patient case example.
• Explore the potential clinical benefits of pharmacogenomics
• Describe the clinical implementation process for pharmacogenomics in a medical institution.
• Discuss resources to facilitate personal and professional genomics education.
Meet Mr. PGx

• 54 year old male presented to the cardiac catheterization laboratory for a left heart cath due to an abnormal stress treadmill study and chest pain

• PMH:
 • Hypercholesterolemia, coronary artery disease

• Intervention:
 • Drug eluting stent in his mid-circumflex coronary artery

• PGx:
 • MD ordered PGx test but sample was not collected
 • Patient discharged on clopidogrel 75mg and aspirin 81mg daily
After diagnosis, patients are prescribed therapy with no reference to the patient’s genetic information.

“Trial and error” or “One size fits all”
One size does not fit all: Relative efficacy of drug and disease, according to Spear et al.

<table>
<thead>
<tr>
<th>Therapeutic area</th>
<th>Relative efficacy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer (all types)</td>
<td>25%</td>
</tr>
<tr>
<td>Alzheimer's Disease</td>
<td>30%</td>
</tr>
<tr>
<td>Hepatitis C</td>
<td>47%</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>48%</td>
</tr>
<tr>
<td>Rheumatoid Arthritis</td>
<td>50%</td>
</tr>
<tr>
<td>Diabetes</td>
<td>51%</td>
</tr>
<tr>
<td>Asthma</td>
<td>57%</td>
</tr>
<tr>
<td>Cardiac Arrhythmias</td>
<td>60%</td>
</tr>
<tr>
<td>Depression (SSRIs)</td>
<td>62%</td>
</tr>
</tbody>
</table>

Source: Hua L
Adverse Drug Events

2007 – 2009: pts ≥ 65 years
99,628 annual hospitalizations
166,174 annual ED visits

Figure 1. Estimated Rates of Emergency Hospitalizations for Adverse Drug Events in Older U.S. Adults, 2007–2009.
Factors that Influence Medication Response

GENETICS 101
The gray cat ran down the hall.
The gray cat ran down the ball.
Changes in DNA might change the way a gene works.
Types of genetic variants

The gray cat ran down the hall. Original
The gray cat ran down the ball. Missense
The gray green cat ran down the hall. Insertion
The gray ___ ran down the hall. Deletion
The gray cat cat ran down the hall. Duplication
The gray. Nonsense
The Human Genome Project

• 13 year international project completed in 2003
• Coordinated by US Department of Energy and the NIH

Project goals:
• Identify all genes in human DNA
• Determine the sequences of the 3 billion chemical base pairs
• Store the information in databases
• Improve tools for data analysis
• Transfer related technologies to the private sector
• Address the ethical, and social issues that may arise

June 26, 2000
The New Era of Medical Practice

• Personalized Medicine
 • “Emerging practice of medicine that uses an individual’s genetic profile to guide decisions made in regard to the prevention, diagnosis, and treatment of disease” - National Human Genome Research Institute

 • First coined in April 1999
 • Robert Langreth and Michael Waldholz in WSJ, later in The Oncologist

 • Also known as:
 • Individualized medicine
 • Precision medicine

Number of articles per year that included the term “personalized medicine”

[Graph showing the number of publications per year from 1999 to 2008, with a significant increase in 2004 and 2005.

Jørgensen J T The Oncologist 2009;14:557-558

Pharmacogenomics

- Drug toxic but beneficial
- Drug toxic but NOT beneficial
- Drug NOT toxic and NOT beneficial
- Drug NOT toxic and beneficial

Patient group

Same diagnosis, same prescription
A PGX EXAMPLE

CYP2C19 & CLOPIDOGREL
CYP2C19 and Clopidogrel

- **Clopidogrel**
 - **Intestinal Absorption**
 - Esterases (85%)
 - 15% (2C19, 1A2, 2B6)
 - **2-oxo-clopidogrel**
 - 2C19, 3A4/5, 2B6
 - **Active Metabolite**

Source: Cardiosource © 2009 by the American College of Cardiology Foundation
Cytochrome P450 2C19

- CYP2C19 is a hepatic enzyme
- Metabolizes about 5-15% of all prescription drugs
- Variations in genotypic inheritance and hepatic expressions
 - Phenotypic variability in substrate metabolism
- Non functional metabolic activity
- Decreased metabolic activity
 - CYP2C19 *9 & *10
- Increased metabolic activity
 - CYP2C19 *17

CYP2C19 Genotypes and Phenotypes

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Genotype/ Activity</th>
<th>Diplotypes Examples</th>
<th>Population Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra-rapid metabolizer (UM)</td>
<td>Carrier of two increased activity alleles OR one normal plus one increased activity allele</td>
<td>*17/*17; *1/*17</td>
<td>~5 – 30%</td>
</tr>
<tr>
<td>Extensive metabolizer (EM)</td>
<td>Wild type (carrier of two normal function alleles)</td>
<td>*1/*1</td>
<td>~35 – 50%</td>
</tr>
<tr>
<td>Intermediate metabolizer (IM)</td>
<td>Carrier of one functional and one loss of function OR one loss of function and one increased activity allele</td>
<td>*1/*2; *2/*17</td>
<td>~18 – 45%</td>
</tr>
<tr>
<td>Poor metabolizer (PM)</td>
<td>Carrier of two loss of function alleles</td>
<td>*2/*2; *3/*3</td>
<td>~2 – 15%</td>
</tr>
</tbody>
</table>

Carriers of a reduced-function CYP2C19 allele have significantly lower levels of the active metabolite of clopidogrel, diminished platelet inhibition, and a higher rate of major adverse cardiovascular events, including stent thrombosis.
PGx Resources

• PharmGKB
 • Pharmacogenomics Knowledge Base
 • Collects, curates and disseminates knowledge about the impact of human genetic variation on drug responses

• CPIC
 • Clinical Pharmacogenetics Implementation Consortium
 • Peer-reviewed guidelines
 • Designed to help clinicians understand **HOW** available genetic test results should be used to optimize drug therapy
 • Freely accessible online
 • Endorsed by ASHP, ASCPT and other external networks

PharmGKB. CPIC: Clinical Pharmacogenetics Implementation Consortium. [Internet]. Available from: https://www.pharmgkb.org/page/cpic
CYP2C19-Guided Antiplatelet Therapy

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>Clinical Implications on Clopidogrel</th>
<th>Therapeutic Recommendations</th>
<th>Level of Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra-rapid Metabolizer</td>
<td>Increased platelet inhibition</td>
<td>Use clopidogrel at label recommended doses</td>
<td>Strong</td>
</tr>
<tr>
<td>Extensive Metabolizer</td>
<td>Normal platelet inhibition</td>
<td>Use clopidogrel at label recommended doses</td>
<td>Strong</td>
</tr>
<tr>
<td>Intermediate Metabolizer</td>
<td>Reduced platelet inhibition, increased risk of adverse CV events</td>
<td>Use alternative antiplatelet therapy (i.e. prasugrel or ticagrelor if not contraindicated)</td>
<td>Moderate</td>
</tr>
<tr>
<td>Poor Metabolizer</td>
<td>Significantly reduced platelet inhibition, increased risk of adverse CV events</td>
<td>Use alternative antiplatelet therapy (i.e. prasugrel or ticagrelor if not contraindicated)</td>
<td>Strong</td>
</tr>
</tbody>
</table>

PGx Clinical Implementation Process

TEAM EFFORT
Pharmacists, physicians, experts in lab, informatics, genetics, health-system administration support, admin staff, medical trainees

- CPIC guidelines
- FDA PGx labeling &/or most evidence on PGx influence
- Med Safety Issues
- Clinician Initiated

PGx Subcommittee

- P&T Committee
- IRB

STANDARD CLINICAL PRACTICE
CLINICAL RESEARCH PROJECT
Mr. PGx continued

- Presented to emergency room 2 days after discharge
 - **CC:** chest pain, substernal chest pressure associated with left arm heaviness and diaphoresis
- Cardiology Intervention:
 - Two overlapping drug eluting stents to right coronary artery
- PGx Team:
 - Followed up with MD the next day to reorder PGx
 - A day later the PGx test was reordered and sample collected
- Discharged on the day 4 on clopidogrel 75mg and ASA 81mg daily awaiting PGx results
 - PGx test resulted as *2/*2 (poor metabolizer) on day 5
 - Clopidogrel was changed to prasugrel 10mg daily
Key Roles in Clinical PGx

• **Advocates**
 - Advocate for the therapeutic applications of pharmacogenomics in practice.

• **Translational Researchers**
 - To validate and standardize genetic markers and genetic testing for drug therapy
 - To guide and accelerate the application of pharmacogenomics to clinical practice

• **Clinical Implementators**
 - Inclusion of pharmacogenomic test results in medical and pharmacy records

• **Educators**
 - Prescribers, nurses, pharmacists and patients

• **Students**
 - Use of pharmacogenomics and incorporation into professional health care curricula.
What went wrong in Mr. PGx’s case?

• How can we improve PGx education for:
 • Physicians assistants?
 • Nurses?

• What are the challenges to PGx education and how can we overcome them?

• What are the roles of faculty and clinicians in the clinical adoption of PGx?
ANY QUESTIONS?
Clinical Adoption of Pharmacogenomics

Implications for Educators and Providers

Aniwaa Owusu Obeng, PharmD

Assistant Professor
Icahn School of Medicine at Mount Sinai
The Charles Bronfman Institute for Personalized Medicine
Division of General Internal Medicine

Clinical Pharmacogenomics Coordinator
The Mount Sinai Hospital
Pharmacy Department

Aniwaa.owusu-obeng@mssm.edu
August 2nd, 2016