Genomics and the EHR

Mark Hoffman, Ph.D.
Vice President Research Solutions
Cerner Corporation
Overview

• EHR from Commercial Perspective

• What can be done TODAY?

• What could be done TOMORROW?

• What are some of the challenges?

• Change management
EHR

• Links diagnostic, treatment, procedural, workflow, administrative information in a machine readable framework

• The **LEGALLY BINDING MEDICAL RECORD**
 – Information must be recoverable during legal proceedings
 – Requires ability to reconstruct information available to clinician **AT THE TIME THAT A DECISION WAS MADE**
 • Strict versioning, date/time stamp
 • Updates to interpretations must be clearly identified

• **Enables** privacy protection through:
 – Audit trail of access
 – Role and organization security

How private is this?
Many Facets of an EHR

- **Software**
 - Commercial
 - Homegrown

- **Hardware**
 - Performance

- **Implementation decisions**
 - Collaborative team between vendor and organization

- **Support policies and procedures**
 - “We can’t query the EHR”
Many types of “EHR”

- Off the Shelf
 - Common build
 - Easy start up
 - Quick implementation
 - Limited flexibility
 - Data can be easily exchanged, limited depth

- Configurable
 - Common architecture
 - Release variability
 - Modularity
 - Implementations vary widely between sites
 - Most data can be exchanged

- Customized
 - Custom architecture
 - Highly flexible
 - Significant effort to implement
 - Limited ability to deploy innovations beyond “parent” institution
Meaningful Use – some important lessons

• Incentive based – enables providers to purchase and install specific EHR capabilities

• Focuses on functionality, does not prescribe how to deliver functionality
 – Commercial systems have significant investments in their platforms
What can we do TODAY to support genomics in the EHR?

Non-exceptionalist perspective:

- **Any** genetic or genomic test can be ordered from an EHR via CPOE
- **Any** genetic test report can be included in the EHR as a text document

Some EHR systems (or LIS modules within an EHR):

- Support storage of discrete genetic findings (variants, quantitative results, cytogenetic abnormalities, karyotypes)
- Support the workflow in molecular diagnostic laboratories
- Provide ISCN syntax checking
- Enable automated interactions with molecular diagnostic devices (DNA extractions, RT-PCR etc.)
- Can configure decision support rules that utilize discrete genetic information
Current capabilities

• Streamline laboratory process

• Codify discrete results
 – LOINC for orders
 – CBO: becoming *de facto* standard – 17 diagnostic labs in US, Canada and Egypt, VA and 15+ other organizations in process
 • Provides rich semantic structure

• Enable decision support with discrete results
• Publish interpretative reports to EHR
• Works within the most widely used HL7 framework (2.x)
HIV Genotype - drug resistance report that guides physician towards alternative therapies based on how the virus is evolving through course of treatment.

- **Current**: displays recent mutations for patient based on current therapy. Red indicates new mutations identified.
- **Summation**: displays all mutations found for the patient through course of treatment.
- Consumer-driven – Cerner Health PHR
- Accessible – web-based Cerner Health PHR
- Portable – one Cerner Health connection to multiple providers
- Time Saving – Completed prior to seeing clinician
- Data Sharing – Copy tree and share with family members
- Standardized – HL7 compliant and SNOMED enabled
- Clinically Relevant – Visual representation for clinicians to track familial conditions using NSCG pedigree standards
What could be done TOMORROW?

• Link storage of DNA sequencing output to EHR
 – Some lessons from large image files that are stored in archive approach
 – Can be compressed by storing differences relative to a reference sequence

• Assist diagnostic expert with interpretation of DNA sequence results (current or NextGEN)
 – Highlight variants of known significance
 – Highlight variants with likely impact despite lack of known significance (stop, frameshift)
 – Document and archive variants of unknown significance for future interpretation

• Periodically reassess results of unknown significance as new findings become available
The problem with using a fixed set of codes

- There’s always that extra piece...
- Difficult for curated content to keep up with the pace of science
The problem with codifying after the result is captured....

• Codification depends on the rules that are implemented at the time that a result is captured

• If (when) the logical rules change, the codification of a variant can vary due to minor modification of the rules. Querying these codes will be challenging.

CTTCCTCCGTG TCCACCTTTGCAGCAACTTTGGG
CCTGGGAAGAAAGTGGCTGGAGCAGTGG
GTGACCGAGGAGGGCCGCGCCTGCTTGGTGCG
CGCCTTCCGCGACCAAGCCGG
“That it will ever come into general use, notwithstanding its value, is extremely doubtful because its beneficial application requires much time and gives a good bit of trouble, both to the patient and to the practitioner because its hue and character are foreign and opposed to all our habits and associations.”

from *The London Times* in 1834

Commenting on ... the “stethoscope”
Change Management - Scenario 2

- The iPad was immediately utilized in clinical practice
- Users saw immediate value and did not seek permission or regulatory approval
Imaging – some similar issues
Some lessons and questions from imaging

• Reports and orders are within EHR context
• Large image files are stored in archive, with links to EHR
• Would the $10 MRI mean that everybody would and should have an MRI? Are there enough radiologists to support the interpretation of the results?
Architecture

Collaborative Cloud Infrastructure

Cloud-based Research Platform

Private Sequence Archive

LIS

EHR
Scenario 3

Here is my DNA sequence!

Courtesy: A. Gonzalez
Mark Hoffman
www.clinbioinformatics.org
mhoffman1@cerner.com
816-201-3291