Population Studies Beyond GWAS – Considering Genes and the Environment

U.S. Department of Health and Human Services
National Institutes of Health
National Human Genome Research Institute

Teri Manolio, M.D., Ph.D.
Director, Office of Population Genomics
June 7, 2010
Population Genomics: Mission

To promote multi-disciplinary research in epidemiology and genomics, by applying genomic technologies to existing population and clinical studies, and developing new population resources for investigation of genetic and environmental contributions to complex diseases.
Population-Based Research Methods

- Findings can be generalized to broad population, not just to those coming to clinical care
- Phenotypes (diseases, traits, risk factors) and environmental exposures defined in valid, reproducible, and transportable manner
- Generally need to be large to reduce sampling variation and spurious findings, allow meaningful subgroup analyses representative of diversity of US population
The case for a US prospective cohort study of genes and environment

Francis S. Collins

National Human Genome Research Institute, National Institutes of Health, Building 31, Room 4B09, MSC 2152, 31 Center Drive, Bethesda, Maryland 20892-2152, USA (e-mail: fsc@nih.gov)

The time is right for the United States to consider such a project.

identical of the genetic and environmental factors that contribute to health, disease and response to treatment is essential for the reduction of illness. This, of course, is the primary goal of biomedical research. Several auspicious recent developments suggest that progress in this area could be quite rapid. The sequence of the human genome1,2 and increasing information about the genome’s function have provided a robust foundation for the investigation of human health and disease. Likewise, results from the exploration of human genetic environmental exposure have improved. These techniques promise to extend the range of epidemiological investigation3. There is growing recognition that a change in the environment, in combination with genetic disposition, has produced most recent epidemics of chronic disease, and may hold the key for reversing the course of some diseases4. For example, consider the interaction of presumed famine-protective genetic predispositions with a modern environment in which there is a ready availability of excess calories. This has probably contributed to the current obesity epidemic

NEW MODELS FOR LARGE PROSPECTIVE STUDIES SYMPOSIUM

January 22, 2010
UK Biobank 'close to signing up 500,000 participants'

By Keith Doyle
BBC News

Scientists behind one of the largest health projects in history say they are close to reaching their target of recruiting half a million participants.

UK Biobank hopes to find out how to prevent serious diseases, from cancer to...
Challenges in Conducting Cost-Effective, Population-Based Genomic Research

- Environmental exposure measures
- Defining phenotypes and exposures from EMR
- Representativeness vs inclusiveness
- Dynamic consent
- Widespread data sharing
- Existing cohorts
Distributed and Centralized Models

Distributed Administration

Centralized Administration

WOMEN’S HEALTH INITIATIVE

nhanes
Key Points from New Models for Large Prospective Cohort Studies

Recruitment
- Diversity >>> high recruitment yield
- Embed in population that permits follow-up
- Cost per ppt recruited is driving force in cost efficiency
- Centralized model provides greater control, nimbleness, cost efficiency

Funding
- Leadership is critical
- Importance of clean, simple structure
Why are Gene-Environment Interactions so Important to Geneticists?

• Genes and environment work together to produce almost all observable traits ("phenotypes") of living beings

• Environment particularly important to geneticists because of pressure it exerts on genome through natural selection

• Environmental effects may provide clues to gene function or other mechanisms of disease
Environment and Natural Selection: The Peppered Moth and Soot

Typical and melanic moths on oak tree near industrial Liverpool.

Typical and melanic moths on lichen-covered tree in rural Wales.

http://www.arn.org/docs/wells/jw_pepmoth.htm
Environment and Selection: The Peppered Moth and Soot AND *Parus major*

Typical and melanistic moths on tree near industrial area in rural Wales.

http://en.wikipedia.org/wiki/Peppered_moth_evolution
Why are Gene-Environment Interactions so Important to Public Health?

• Environmental and behavioral changes interacting with genetic predisposition have likely produced most recent epidemics of chronic diseases

• GxE may be key in reversing their course, by suggesting approaches for modifying effects of deleterious genes

• Future public health measures may focus on avoiding deleterious environmental exposure, especially in genetically susceptible persons
Why are Gene-Environment Interactions so Important to Research?

- Can mask detection of genetic (or environmental) effect if they are not identified and controlled for
- Can lead to inconsistencies in disease associations in different populations with:
 - Different environmental exposures that modify the effect of a genetic variant
 - Different prevalences of genetic variants that modify the effect of an environmental exposure
Challenges in Studying Gene-Environment Interactions

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Genes</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ease of measure</td>
<td>Pretty easy</td>
<td>Often hard</td>
</tr>
<tr>
<td>Variability over time</td>
<td>Low/none</td>
<td>High</td>
</tr>
<tr>
<td>Recall bias</td>
<td>None</td>
<td>Possible</td>
</tr>
<tr>
<td>Selection bias</td>
<td>Minimal</td>
<td>Possible</td>
</tr>
<tr>
<td>Temporal relation to disease</td>
<td>Easy</td>
<td>Hard</td>
</tr>
</tbody>
</table>
Six Easy Steps to Implementing Large US Prospective Study of Genes and Environment

- Find inexpensive, simple, and reliable measures of key environmental exposures
- Find inexpensive, simple, reliable measures of broad range of phenotypes (outcomes)
- Cut recruitment/exam costs by 90% or more
- Use standardized, readily accessible, reliable electronic medical records for follow-up
- Mirror full richness and diversity of US population in recruited sample
- Vest responsibility in study leadership, backed by simple, clear lines of authority
“Hey! They’re lighting their arrows! ... Can they *do* that?”
