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Epigenomic Imputation Problem 

Problem: Predict mark, cell type data 
genome-wide assuming no data for 
the dataset we are trying to predict 
 Complete big (mark, tissue) data matrix 
 Combines potentially hundreds of datasets 

to generate more robust and higher 
quality versions of observed data sets 

111 Roadmap Epigenomics;  
16 ENCODE 

Ernst and Kellis, Nature Biotech 2015 



ChromImpute: Two classes of features  
Other marks in same tissue Same mark in other tissues 

Features for a mark 
• At target position and every 

25bp left and right until 
500bp.  

• At 500bp and every 500bp 
left and right until 10000 
bp. 

Features: 
• Average target mark signal at 

target position  in K-nearest 
epigenomes for K=1,…,10 

• Separate set of features for 
distance defined based on each 
mark in target epigenome and 
local and global distance 



ChromImpute: Training and Prediction strategy 

• Assume no training data for target mark in target epigenome 
• Separate regression tree(s) for each epigenome where mark is available 
• Restrict features to common marks between target and informant tissue 
• Apply each regression tree to target epigenome and average predictions 
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Browser Visualizations 

• Randomly selected 9 -200kb regions to 
visualize and one sample for each mark 
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Blue observed; Red Imputed 

Browser Screenshots of Random Loci 
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Blue observed; Red Imputed 

Browser Screenshots of Random Loci 
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Blue observed; Red Imputed 

Browser Screenshots of Random Loci 

H3K27me3 
H3K36me3 
H3K4me1 
H3K4me3 
H3K9me3 
H3K27ac 
H3K9ac 
DNase 

H3K4me2 

H2A.Z 
H3K79me2 
H4K20me1 

DNAmethyl 

RNAseq 

8 



Blue observed; Red Imputed 
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Blue observed; Red Imputed 
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Imputed data is a close match to observed at multiple 
resolutions 

• 2Mb region, 1 tissue per mark 



• 200kb region, 1 tissue per mark 

Imputed data is a close match to observed at multiple 
resolutions 



25-bp windows 

• 10kb region, at 25bp bins 

Imputed data is a close match to observed at multiple 
resolutions 



Observed/Imputed Data at 2000 Random Positions 

• Captures cell type specificity 
• Dynamic changes across 

marks 



ChromImpute Outperforms Two 
Stringent Baselines 

• Signal Average – average of mark across all other epigenomes 
• Best Case Single Epigenome  –  upper bound on performance when selecting one 

epigenome 
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ChromImpute Outperforms Baselines on 
Vast Majority of Individual Data Sets 

20 



Imputed data capture tissue specificity/relationships 

• Better tissue coherence than observed datasets! 

AUC for Correlation Classifying Pairs of 
Experiments as the Same Group  
(Excluding Other and ENCODE) 



Imputed: Better agreement with TSS and gene annotations 
+/-2kb TSS recovery with H3K4me3 Gene recovery with H3K36me3 

• Unbiased comparison of observed/imputed data 
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Observed/imputed discrepancy  Flag low-quality data 

• Existing QC metrics can fail for wrong Ab, cross-reactivity, label-swap 
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Predictive Performances Increases for More 
Broadly Expressed Genes 

Expressed level RPKM>= 0.5 



Mark prioritization from imputation performance 

Evaluation of performance for subset of marks/features 
relative to prediction with all features on deep epigenomes 



Mark prioritization from imputation performance 

H3K18ac + H3K79me2 more informative for most mark imputations than core set 
in a new cell type given an existing roughly uniform coverage compendium 



Imputed signal data shows stronger H3K27ac-GWAS associations 

Number of GWAS studies Number of Trait-Tissue Enriched Pairs 
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Method:  
• H3K27ac association for GWAS catalog (Hindorff et al, 2009) 
• GWAS-Tissue association vs. all GWAS SNPs (Mann-Whitney test) 
• Restrict to 98 common samples (1MB pruned) 
Results: Imputed H3K27ac shows higher association than observed 
• More significant P-value for most-significant tissue in each trait 
• Higher total number of significant tissues across all tissues and traits 
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Imputation improves trait-relevant tissue association 
Imputed H3K27ac 

Association (-log10 P) 

Observed H3K27ac Association (-log10 P) 



Imputation improves trait-relevant tissue association 

Most significant enrichment shown for observed or imputed data 

Multiple Sclerosis – T helper naive cells  Imputed H3K27ac 
Association (-log10 P) 

Observed H3K27ac Association(-log10 P) 

Inflammatory bowel disease – 
Monocytes 

HDL cholesterol – Liver 

Urate Levels – Fetal  
Intestine Large 

Cholesterol, total – Liver 

Rheumatoid arthritis  - B cells 

Crohn's – T helper cells 
Platelet count – Hematopoietic 
stem cells  

Celiac Disease – T helper cells PMA-I 
stimulated 

Systemic lupus erythematosus – 
GM12878 Lymphoblastoid Cell Line 

Ulcerative colitis –  Colonic Mucosa 

Alzheimer's disease (late onset)–  Primary 
monocytes from peripheral blood  

Height – MSC-Derived  
Chondrocytes 

Type 1 diabetes  – Primary T regulatory 
cells from peripheral blood 
Chronic lymphocytic  
leukemia – Fetal Thymus 

Primary biliary cirrhosis –  
T regulatory cells 



Imputation improves trait-relevant tissue association 



Significant Sample-Study Combinations 
Additional Marks 

H3K9ac 
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25 chromatin states from 12 marks imputed in 127 cells 

Chromatin states based on ChromHMM (Ernst and Kellis, 2012) 
Observed model based on 5-core marks 
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Summary 

• ChromImpute method to impute epigenomic data 
– Predict data sets not experimentally mapped 
– Provides a more robust version of experimentally mapped data 

• Imputed data and chromatin states a resource to interpret 
locations identified by GWAS 
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URLs:  
http://www.biolchem.ucla.edu/labs/ernst/ChromImpute/ (software) 
http://compbio.mit.edu/roadmap (data links) 
http://epigenomegateway.wustl.edu/browser/roadmap/ (browser view) 
 

http://www.biolchem.ucla.edu/labs/ernst/ChromImpute/
http://compbio.mit.edu/roadmap
http://epigenomegateway.wustl.edu/browser/roadmap/
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