Protein Structure Analysis & Protein-Protein Interactions

David Wishart
University of Alberta, Edmonton, Canada
david.wishart@ualberta.ca

Much Ado About Structure

• Structure ↔ Function
• Structure ↔ Mechanism
• Structure ↔ Origins/Evolution
• Structure-based Drug Design
• Solving the Protein Folding Problem
Routes to 3D Structure

- X-ray Crystallography (the best)
- NMR Spectroscopy (close second)
- Cryoelectron microsocopy (distant 3rd)
- Homology Modelling (sometimes VG)
- Threading (sometimes VG)

X-ray Crystallography
X-ray Crystallography

- Crystallization
- Diffraction Apparatus
- Diffraction Principles
- Conversion of Diffraction Data to Electron Density
- Resolution
- Chain Tracing

Diffraction Apparatus

[Diagram of X-ray crystallography apparatus]
Protein Crystal Diffraction

Diffraction Pattern

Converting Diffraction Data to Electron Density

$FT$
Resolution

http://www-structure.llnl.gov/Xray/101index.html

The Final Result

ORIGX2  0.000000  1.000000  0.000000   0.00000  2TRX 147
ORIGX3  0.000000  0.000000  1.000000   0.00000  2TRX 148
SCALEE1 0.011173  0.000000  0.004858   0.00000  2TRX 149
SCALEE2 0.000000  0.019585  0.000000   0.00000  2TRX 150
SCALEE3 0.000000  0.000000  0.018039   0.00000  2TRX 151
ATOM 1 N  SER A   1      21.389  25.406  -4.628  1.00 23.22      2TRX 152
ATOM 2 CA SER A   1      21.628  26.691  -3.983  1.00 24.42      2TRX 153
ATOM 3 C  SER A   1      20.937  26.944  -2.679  1.00 24.21      2TRX 154
ATOM 4 O  SER A   1      21.072  28.079  -2.093  1.00 24.97      2TRX 155
ATOM 5 CB SER A   1      22.276  27.925  -5.861  1.00 32.61      2TRX 156
ATOM 7 N  ASP A   2      20.173  26.125  -0.949  1.00 21.57      2TRX 157
ATOM 8 CA ASP A   2      20.173  26.125  -0.949  1.00 21.57      2TRX 158
ATOM 9 C  ASP A   2      20.264  26.214  -0.297  1.00 20.89      2TRX 159
ATOM 10 O ASP A   2      19.760  26.575  1.371  1.00 21.49      2TRX 160
ATOM 11 CB ASP A   2      18.439  24.914  -0.856  1.00 22.14      2TRX 161
**NMR Spectroscopy**

Diagram showing the components of NMR Spectroscopy:
- Sampling device
- Radio Wave Transceiver
- Computer

**Principles of NMR**

Diagram illustrating the energy levels of NMR:
- Low Energy
- High Energy
Multidimensional NMR

1D
MW ~ 500

2D
MW ~ 10,000

3D
MW ~ 30,000

The NMR Process

- Obtain protein sequence
- Collect TOCSY & NOESY data
- Use chemical shift tables and known sequence to assign TOCSY spectrum
- Use TOCSY to assign NOESY spectrum
- Obtain inter and intra-residue distance information from NOESY data
- Feed data to computer to solve structure
NMR Spectroscopy

Chemical Shift Assignments

NOE Intensities

J-Couplings

Distance Geometry Simulated Annealing

The Final Result

<table>
<thead>
<tr>
<th>ATOM</th>
<th>1  N  SER A 1</th>
<th>21.389 26.406 -4.628 1.00 23.22</th>
<th>2TRX 147</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORIGX2</td>
<td>0.000000 1.000000 0.000000 0.000000</td>
<td>2TRX 148</td>
<td></td>
</tr>
<tr>
<td>ORIGX3</td>
<td>0.000000 0.000000 1.000000 0.000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCALE1</td>
<td>0.011173 0.000000 0.004858 0.000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCALE2</td>
<td>0.000000 0.019585 0.000000 0.000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCALE3</td>
<td>0.000000 0.000000 0.018039 0.000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATOM</td>
<td>2  CA  SER A 1</td>
<td>21.628 26.691 -3.983 1.00 24.42</td>
<td>2TRX 153</td>
</tr>
<tr>
<td>ATOM</td>
<td>3  C  SER A 1</td>
<td>20.937 26.944 -2.679 1.00 24.21</td>
<td>2TRX 154</td>
</tr>
<tr>
<td>ATOM</td>
<td>4  O  SER A 1</td>
<td>21.072 28.079 -2.093 1.00 24.97</td>
<td>2TRX 155</td>
</tr>
<tr>
<td>ATOM</td>
<td>5  CB  SER A 1</td>
<td>21.117 27.770 -5.002 1.00 24.27</td>
<td>2TRX 156</td>
</tr>
<tr>
<td>ATOM</td>
<td>6  OG  SER A 1</td>
<td>22.276 27.925 -5.861 1.00 22.61</td>
<td>2TRX 157</td>
</tr>
<tr>
<td>ATOM</td>
<td>7  N  ASP A 2</td>
<td>20.173 26.028 -2.163 1.00 21.39</td>
<td>2TRX 158</td>
</tr>
<tr>
<td>ATOM</td>
<td>8  CA  ASP A 2</td>
<td>19.395 26.125 -0.949 1.00 21.57</td>
<td>2TRX 159</td>
</tr>
<tr>
<td>ATOM</td>
<td>9  C  ASP A 2</td>
<td>20.264 26.214 0.297 1.00 20.89</td>
<td>2TRX 160</td>
</tr>
<tr>
<td>ATOM</td>
<td>10 O  ASP A 2</td>
<td>19.760 26.575 1.371 1.00 21.49</td>
<td>2TRX 161</td>
</tr>
<tr>
<td>ATOM</td>
<td>11 CB  ASP A 2</td>
<td>18.439 24.914 -2.856 1.00 22.14</td>
<td>2TRX 162</td>
</tr>
</tbody>
</table>
X-ray Versus NMR

X-ray
• Producing enough protein for trials
• Crystallization time and effort
• Crystal quality, stability and size control
• Finding isomorphous derivatives
• Chain tracing & checking

NMR
• Producing enough labeled protein for collection
• Sample “conditioning”
• Size of protein
• Assignment process is slow and error prone
• Measuring NOE’s is slow and error prone

Comparative (Homology) Modelling

ACDEFGHIKLMNPQRST--FGHQRWT-----TYREWYGHADS
ASDEYAHRLDPQRSTVAYAYE--KSFAPPFSFKWYEYAHADS
MCDEYAHRLMNPERSTVAGGHQWERT-----GSFKWYAHADD
Homology Modelling

- Offers a method to “Predict” the 3D structure of proteins for which it is not possible to obtain X-ray or NMR data
- Can be used in understanding function, activity, specificity, etc.
- Of interest to drug companies wishing to do structure-aided drug design
- A keystone of Structural Proteomics

Homology Modelling

- Identify homologous sequences in PDB
- Align query sequence with homologues
- Find Structurally Conserved Regions (SCRs)
- Identify Structurally Variable Regions (SVRs)
- Generate coordinates for core region
- Generate coordinates for loops
- Add side chains (Check rotamer library)
- Refine structure using energy minimization
- Validate structure
Modelling on the Web

- Prior to 1998 homology modelling could only be done with commercial software or command-line freeware
- The process was time-consuming and labor-intensive
- The past few years has seen an explosion in automated web-based homology modelling servers
- Now anyone can homology model!

The Final Result

ORIGX2  0.000000  1.000000  0.000000  0.000000  2TRX 147
ORIGX3  0.000000  0.000000  1.000000  0.000000  2TRX 148
SCALE1  0.011173  0.000000  0.004858  0.000000  2TRX 149
SCALE2  0.000000  0.019585  0.000000  0.000000  2TRX 150
SCALE3  0.000000  0.000000  0.018039  0.000000  2TRX 151
ATOM    1  N   SER A   1      21.389  25.406  -4.628  1.00 23.22      2TRX 152
ATOM    2  CA  SER A   1      21.628  26.691  -3.983  1.00 24.42      2TRX 153
ATOM    3  C   SER A   1      20.937  26.944  -2.679  1.00 24.21      2TRX 154
ATOM    4  O   SER A   1      21.072  28.079  -2.093  1.00 24.97      2TRX 155
ATOM    5  CB  SER A   1      21.117  27.770  -5.002  1.00 28.27      2TRX 156
ATOM    6  OG  SER A   1      22.276  27.925  -5.861  1.00 32.61      2TRX 157
ATOM    7  N   ASP A   2      20.173  26.028  -2.163  1.00 21.39      2TRX 158
ATOM    8  CA  ASP A   2      19.395  26.125  -0.949  1.00 21.57      2TRX 159
ATOM    9  CB  ASP A   2      18.439  24.914  -0.856  1.00 22.14      2TRX 162

The PDB

- PDB - Protein Data Bank
- Established in 1971 at Brookhaven National Lab (7 structures)
- Primary archive for macromolecular structures (proteins, nucleic acids, carbohydrates – now 30,000 structures)
- Moved from BNL to RCSB (Research Collaboratory for Structural Bioinformatics) in 1998
http://www.rcsb.org/pdb/

Viewing 3D Structures
QuickPDB

- http://www.sdsc.edu/pb/Software.html
- Very simple viewing program with limited manipulation and very limited rendering capacity -- Very fast
- Java Applet (Source code available)
- Compatible with most browsers and computer platforms
Protein Explorer (Chime)

- [http://www.umass.edu/microbio/chime/explorer/](http://www.umass.edu/microbio/chime/explorer/)
- Uses Chime & Rasmol for its back-end
- Very flexible, user friendly, well documented, offers morphing, sequence structure interface, comparisons, context-dependent help, smart zooming, off-line
- Browser Plug-in (Like PDF reader)
- Compatible with Netscape (Mac & Win)
Swiss PDB Viewer

- Among most sophisticated molecular rendering, manipulation and modelling packages (commercial or freeware)
- Supports threading, hom. Modelling, energy minimization, seq/struc interface
- Stand-alone version only
- Compatible on Mac, Win, Linux, SGI
Swiss PDB Tutorial

http://www.usm.maine.edu/~rhodes/SPVTut/

Summary

<table>
<thead>
<tr>
<th>Software</th>
<th>Mac</th>
<th>Win</th>
<th>Unix</th>
<th>Rendr</th>
<th>SeqView</th>
<th>Super</th>
<th>E Min</th>
<th>Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rasmol</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chime</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Prot. Expl.</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Quick PDB</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Biomer</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>SwP Viewer</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MolMol</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+++</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>
Analyzing and Assessing 3D Structures

Why Assess Structure?

- A structure can (and often does) have mistakes
- A poor structure will lead to poor models of mechanism or relationship
- Unusual parts of a structure may indicate something important (or an error)
Famous “bad” structures

- Azobacter ferredoxin (wrong space group)
- Zn-metallothionein (mistraced chain)
- Alpha bungarotoxin (poor stereochemistry)
- Yeast enolase (mistraced chain)
- Ras P21 oncogene (mistraced chain)
- Gene V protein (poor stereochemistry)

How to Assess Structure?

- Assess experimental fit (look at $R$ factor {X-ray} or rmsd {NMR})
- Assess correctness of overall fold (look at disposition of hydrophobes, location of charged residues)
- Assess structure quality (packing, stereochemistry, bad contacts, etc.)
## A Good Protein Structure..

<table>
<thead>
<tr>
<th>X-ray structure</th>
<th>NMR structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>R = 0.59 random chain</td>
<td>rmsd = 4 Å random</td>
</tr>
<tr>
<td>R = 0.45 initial structure</td>
<td>rmsd = 2 Å initial fit</td>
</tr>
<tr>
<td>R = 0.35 getting there</td>
<td>rmsd = 1.5 Å OK</td>
</tr>
<tr>
<td>R = 0.25 typical protein</td>
<td>rmsd = 0.8 Å typical</td>
</tr>
<tr>
<td>R = 0.15 best case</td>
<td>rmsd = 0.4 Å best case</td>
</tr>
<tr>
<td>R = 0.05 small molecule</td>
<td>rmsd = 0.2 Å dream on</td>
</tr>
</tbody>
</table>

## Cautions...

- A low R factor or a good RMSD value does not guarantee that the structure is “right”
- Differences due to crystallization conditions, crystal packing, solvent conditions, concentration effects, etc. can perturb structures substantially
- Long recognized need to find other ways to ID good structures from bad (not just assessing experimental fit)
Structure Variability

- X-ray to X-ray
  Interleukin 1β
  (41bi vs 2mlb)

- NMR to X-ray
  Erabutoxin
  (3ebx vs 1era)

A Good Protein Structure..

- Minimizes disallowed torsion angles
- Maximizes number of hydrogen bonds
- Maximizes buried hydrophobic ASA
- Maximizes exposed hydrophilic ASA
- Minimizes interstitial cavities or spaces
A Good Protein Structure..

- Minimizes number of “bad” contacts
- Minimizes number of buried charges
- Minimizes radius of gyration
- Minimizes covalent and noncovalent (van der Waals and coulombic) energies

Structure Validation Servers

- Biotech Validation Suite - http://biotech.ebi.ac.uk:8400/cgi-bin/sendquery
- Verify3D - http://www.doe-mbi.ucla.edu/Services/Verify_3D/
- VADAR - http://redpoll.pharmacy.ualberta.ca
Structure Validation Programs

- PROCHECK -
  http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html
- PROSA II -
  http://lore.came.sbg.ac.at/People/mo/Prosa/prosa.html
- VADAR -
  http://www.pence.ualberta.ca/ftp/vadar/
- DSSP -
  http://www.embl-heidelberg.de/dssp/

Procheck
Comparing 3D Structures

Same or Different?
Qualitative vs. Quantitative

Rigid Body Superposition
Superposition

• Objective is to match or overlay 2 or more similar objects
• Requires use of translation and rotation operators (matrices/vectors)
• Least squares or conjugate gradient minimization (McLachlan/Kabsch)
• Lagrangian multipliers
• Quaternion-based methods (fastest)

SuperPose Web Server

http://wishart.biology.ualberta.ca/SuperPose/
Superposition - Applications

- Ideal for comparing or overlaying two or more protein structures
- Allows identification of structural homologues (CATH and SCOP)
- Allows loops to be inserted or replaced from loop libraries (comparative modelling)
- Allows side chains to be replaced or inserted with relative ease

Measuring Superpositions
RMSD - Root Mean Square Deviation

- Method to quantify structural similarity - same as standard deviation
- Requires 2 superimposed structures (designated here as “a” & “b”)
- $N =$ number of atoms being compared

\[
RMSD = \sqrt{\frac{\sum_{i} (x_{ai} - x_{bi})^2 + (y_{ai} - y_{bi})^2 + (z_{ai} - z_{bi})^2}{N}}
\]

- 0.0-0.5 Å  →  Essentially Identical
- <1.5 Å →  Very good fit
- < 5.0 Å  →  Moderately good fit
- 5.0-7.0 Å →  Structurally related
- > 7.0 Å →  Dubious relationship
- > 12.0 Å →  Completely unrelated
Detecting Unusual Relationships

Similarity between Calmodulin and Acetylcholinesterase

Classifying Protein Folds
SCOP Database

http://scop.mrc-lmb.cam.ac.uk/scop

**SCOP**

- **Class** folding class derived from secondary structure content
- **Fold** derived from topological connection, orientation, arrangement and # 2° structures
- **Superfamily** clusters of low sequence ID but related structures & functions
- **Family** clusters of proteins with seq ID > 30% with v. similar struct. & function
Different Folding Classes

Lactate Dehydrogenase: Mixed α / β
Immunoglobulin Fold: β
Hemoglobin B α-Chain

CATH Database

http://www.biochem.ucl.ac.uk/bsm/cath/
CATH

- **Class** [C] derived from secondary structure content (automatic)
- **Architecture** (A) derived from orientation of $2\degree$ structures (manual)
- **Topology** (T) derived from topological connection and $\#\ 2\degree$ structures
- **Homologous** Superfamily (H) clusters of similar structures & functions

Other Servers/Databases

- **Dali** - http://www.ebi.ac.uk/dali/
- **CE** - http://cl.sdsc.edu/ce.html
- **FSSP** - http://www.ebi.ac.uk/dali/fssp/fssp.html
- **PDBsum** - www.biochem.ucl.ac.uk/bsm/pdbsum/
Protein Interactions

The Protein Parts List
The Parts List

- Sequencing gives “serial number”
- Sequence alignment gives a name
- Microarrays give # of parts
- X-ray and NMR give a picture
- However, having a collection of parts and names doesn’t tell you how to put something together or how things connect -- *this is biology*

Remember: *Proteins Interact*
Proteins Assemble

Types of Interactions

- Permanent (quaternary structure, formation of stable complexes)
- Transient (brief interactions, signaling events, pathways)
- About 1/4 to 1/3 of all proteins form complexes (dimers $\rightarrow$ multimers)
- Each protein may transiently interact with $\sim$3 other proteins
Protein Interaction Tools and Techniques - Experimental Methods

3D Structure Determination

- X-ray crystallography
  - grow crystal
  - collect diffract. data
  - calculate e- density
  - trace chain
- NMR spectroscopy
  - label protein
  - collect NMR spectra
  - assign spectra & NOEs
  - calculate structure using distance geom.
Quaternary Structure

Some interactions are real

Others are not

Protein Interaction Domains

http://www.mshri.on.ca/pawson/domains.html
Yeast Two-Hybrid Analysis

- Yeast two hybrid experiments yield information on protein protein interactions
- GAL4 Binding Domain
- GAL4 Activation Domain
- X and Y are two proteins of interest
- If X & Y interact then reporter gene is expressed

Affinity Pull-down
Protein Arrays

Protein Interaction Tools and Techniques - Computational Methods
Sequence Searching Against Known Domains

Text Mining

- Searching Medline or Pubmed for words or word combinations
- “X binds to Y”; “X interacts with Y”; “X associates with Y” etc. etc.
- Requires a list of known gene names or protein names for a given organism
- Sometimes called “Textomy”
## Pre-BIND

- **Donaldson et al. BMC Bioinformatics 2003 4:11**
- Used Support Vector Machine (SVM) to scan literature for protein interactions
- Precision, accuracy and recall of 92% for correctly classifying PI abstracts
- Estimated to capture 60% of all abstracted protein interactions for a given organism
Rosetta Stone Method

Monomeric proteins that are fused in other organisms tend to be functionally related and physically interacting.

For example, using the Rosetta Stone™ method, it was found that human Nt and Fhit proteins are:

- fused in invertebrates
- form a heterocomplex in mammals

Interologs, Homologs, Paralogs...

- **Homolog**
  - Common Ancestors
  - Common 3D Structure
  - Common Active Sites

- **Ortholog**
  - Derived from Speciation

- **Paralog**
  - Derived from Duplication

- **Interolog**
  - Protein-Protein Interaction
A Flood of Data

- High throughput techniques are leading to more and more data on protein interactions
- Very high level of false positives – need tools to sort and rationalize
- This is where bioinformatics can play a key role
- Some suggest that this is the “future” for bioinformatics

Interaction Databases

- BIND – http://www.bind.ca/
- DIP – http://dip.doe-mbi.ucla.edu/
- MINT – http://160.80.34.4/mint/
- IntAct – http://www.ebi.ac.uk/intact/index.jsp

More Protein Interaction Databases
http://www.hgmp.mrc.ac.uk/GenomeWeb/prot-interaction.html
The BIND Database

- BIND - Biomolecular Interaction Network Database
- Designed to capture almost all interactions between biomolecules (large and small)
- Largest database of its kind -- 135,000 interactions recorded to date

BIND Can Encode...

- Simple binary interactions
- Enzymes, substrates and conformational changes
- Restriction enzymes
- Limited proteolysis
- Phosphorylation (reversible)
- Glycosylation
- Intron splicing
- Transcriptional factors
BIND Queries

- Users may search PreBIND by
  - Protein name, organism, protein accession # or PubMed ID
- Users may search BIND by
  - Accession or GI #, GO ID, PDB ID, PubMed ID, taxonomy, author, journal, Entrez GeneID, or more than 20 different database identifier tags
  - Sequence (via BINDBlast)
PreBIND Query (Ras1 & Yeast)
BIND Details

Ontoglyphs
Summary

• First application of bioinformatics was probably in protein structure (the PDB)
• Structural biology continues to be a rich source for bioinformatics innovation and bioinformaticians
• Next “big” step in bioinformatics is to go from the “parts list” to figuring out how to put it all together