Comparative Genomics Fact Sheet

National Human Genome Research Institute

National Institutes of Health
U.S. Department of Health and Human Services

Comparative Genomics

View illustration

What is comparative genomics?

Comparative genomics is an exciting field of biological research in which researchers use a variety of tools, including computer-based analysis, to compare the complete genome sequences of different species. By carefully comparing characteristics that define various organisms - including the genomes of organisms ranging from humans to chimpanzees to yeast - researchers can pinpoint regions of similarity and difference. This information can help scientists better understand the structure and function of human genes, and develop new strategies to combat human disease.

Top of page

What are the benefits of comparative genomics?

Identifying DNA sequences that have been "conserved" - that is, preserved in many different organisms over millions of years - is an important step toward understanding the genome itself. It pinpoints genes that are essential to life and highlights genomic signals that control gene function across many species. It helps us to further understand what genes relate to various biological systems, which in turn may translate into innovative approaches for treating human disease and improving human health.

Comparative genomics also provides a powerful tool for studying evolution. By taking advantage of - and analyzing- the evolutionary relationships between species and the corresponding differences in their DNA, scientists can better understand how the appearance, behavior and biology of living things have changed over time. 

As DNA sequencing technology becomes more powerful and less expensive, comparative genomics is finding wider applications in agriculture, biotechnology and zoology as a tool to tease apart the often subtle differences among animal species. Such efforts have led to new insights into some branches on the evolutionary tree, as well as improving the health of domesticated animals and pointing to new strategies for conserving rare and endangered species.

Top of page

What is a genome made of?

The genomes of almost all living creatures, both plants and animals, consist of DNA (deoxyribonucleic acid), the chemical chain that includes the genes that code for different proteins and the regulatory sequences that turn those genes on and off. Precisely which protein is produced by any given gene is determined by the sequence in which four building blocks - adenine (A), thymine (T), cytosine (C) and guanine (G) - are laid out along DNA's twisted, double-helix structure.

Top of page

What results has the field of comparative genomics produced?

Comparative genomics has yielded dramatic results. Investigators are increasingly using comparative genomics to explore areas ranging from human development and behavior to metabolism and susceptibility to disease. These studies are uncovering new behavioral, neurological and developmental pathways and genes that are shared or related among species. Some researchers are using comparative genomics to reveal the genomic underpinnings of disease in animals with the hope of gaining new insights into disease development in humans.

Among the results so far are the following:

Top of page

What other genomes have been sequenced?

Researchers have sequenced the complete genomes of hundreds of animals and plants-more than 250 animal species and 50 species of birds alone-and the list continues to grow almost daily.

In addition to the sequencing of the human genome, which was completed in 2003, scientists involved in the Human Genome Project sequenced the genomes of a number of model organisms that are commonly used as surrogates in studying human biology. These include the rat, puffer fish, fruit fly, sea squirt, roundworm, and the bacterium Escherichia coli.  For some organisms NHGRI has sequenced many varieties, providing critical data for understanding genetic variation.

DNA sequencing centers supported by NHGRI also have sequenced genomes of the chicken, dog, honey bee, gorilla, chimpanzee, sea urchin, fungi and many other organisms.

Top of page

How is the National Human Genome Research Institute (NHGRI) involved in the growth of this new field of research?

NHGRI pioneered the development of DNA sequencing methods and technologies - including informatics - and has funded research to study the genomes of a wide range of species. The National Institutes of Health (NIH) Intramural Sequencing Center has been instrumental in the sequencing of many organisms.

NHGRI programs such as ENCODE (Encyclopedia of DNA Elements) and modENCODE (model organism Encyclopedia of DNA Elements) have compared and contrasted the inner workings of animal and human genomes to try to better understand how genomes function.

In modENCODE, researchers found shared patterns of gene activity and regulation among fly, worm and human genomes. The mouse ENCODE Consortium demonstrated that, in general, the systems that are used to control gene activity have many similarities in mice and humans.

Top of page

Last Updated: November 3, 2015