How to train your

DragoNN

(Deep RegulAtory GenOmic Neural Network)

A workshop on Deep Learning for Regulatory Genomics

June 9th 2016 ENCODE Users Meeting Stanford University

The dragonn package implements deep neural networks (DNNs) for regulatory genomics, methods for DNN interpretation, and provides tutorials showcasing dragonn models using sequence simulations.

For code, tutorial, and upcoming workshops: <u>http:</u> //kundajelab.github.io/dragonn/

Primer with guidelines and in-vivo models coming soon!

Before we begin ..

Username:	
lastname_firstname	
Password:	
Sign In	

Logging in and starting the tutorial

1. Point your browser to

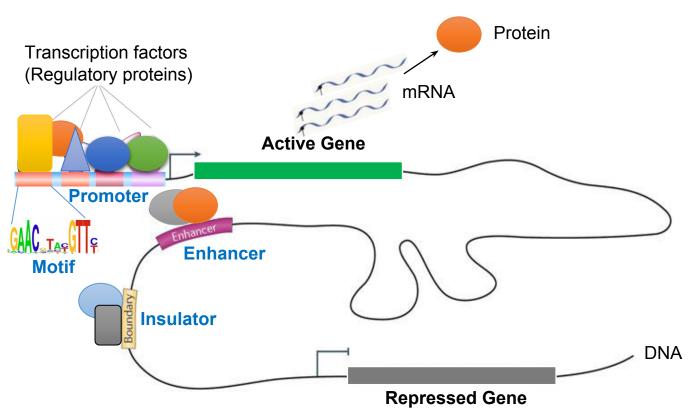
http://mitra.stanford.edu/dragonn.html

This should bring up a login page to the dragonn client:

2. Your username is of the format **lastname_firstname** based on the information you used to register for this tutorial.

The password is dragonn

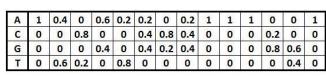
Gene Regulation



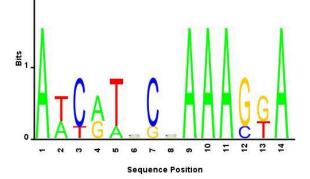
Sequence motifs

ATTATAGCAAACTA AACATGCCAAAGTA ATCATCCAAAAGGA ATCGTCCGAAAGGA AACGAGCGAAAGGA

Set of aligned sequences

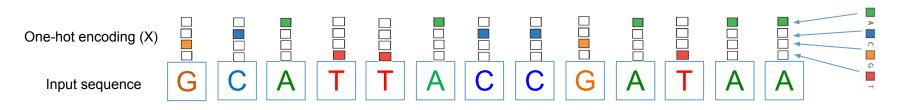


Position-specific scoring matrix $p_i(x_i = a_i)$



PSSM logo

For a subsequence
$$S = a_1, a_2, ..., a_k$$
 where $a_i \in \{A, C, G, T\}$ log-odds score $(S) = \sum_{i=1...k} \log_2 \left(\frac{p_i(x_i = a_i)}{p_{bg}(x_i = a_i)} \right) \ge \text{threshold} \Rightarrow \text{true hit}$

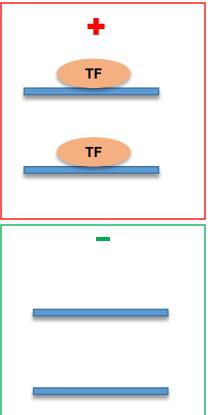


Learning regulatory sequence patterns

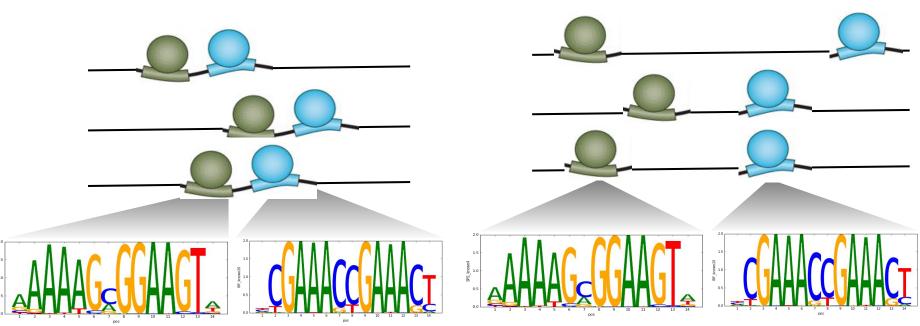
 Positive class of genomic sequences bound a TF of interest

Can we learn patterns (motifs) in the DNA sequence that distinguish these 2 classes of genomic sequences?

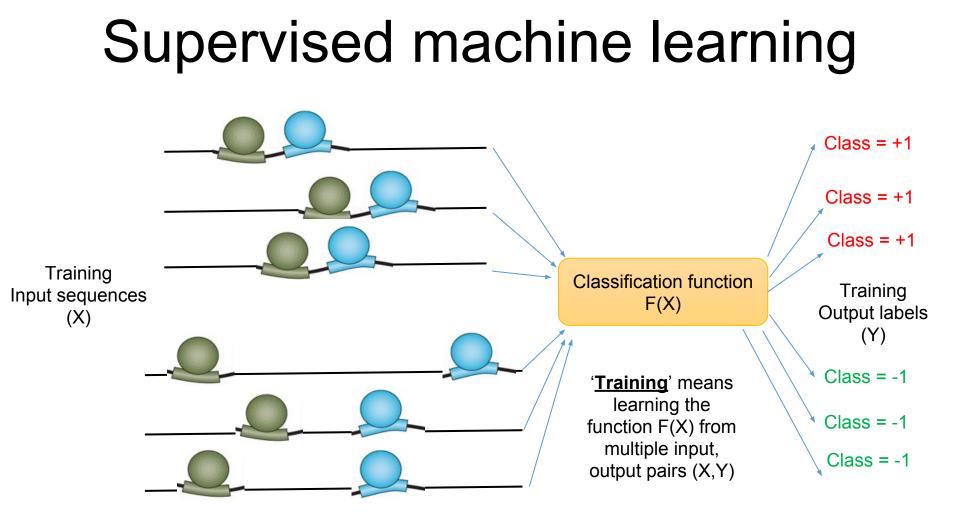
 Negative class of genomic sequences not bound by TF of interest



Simulation



Positive class of genomic sequences containing two motifs with relatively **fixed** spacing Negative class of genomic sequences containing two motifs with **random** spacing



Supervised machine learning

Test Input sequences (X)

Classification function F(X)

> '<u>Testing</u>' means predicting the output labels (class) Y for a new sequence X not used in training

Is its class Y = +1 or -1? Probability (Y = +1 given X)

A simple classifier
(An artificial neuron)
$$Y = F(x_1, x_2, x_3)$$

$$Z = w_1 \cdot x_1 + w_2 \cdot x_2 + w_3 \cdot x_3 + b$$

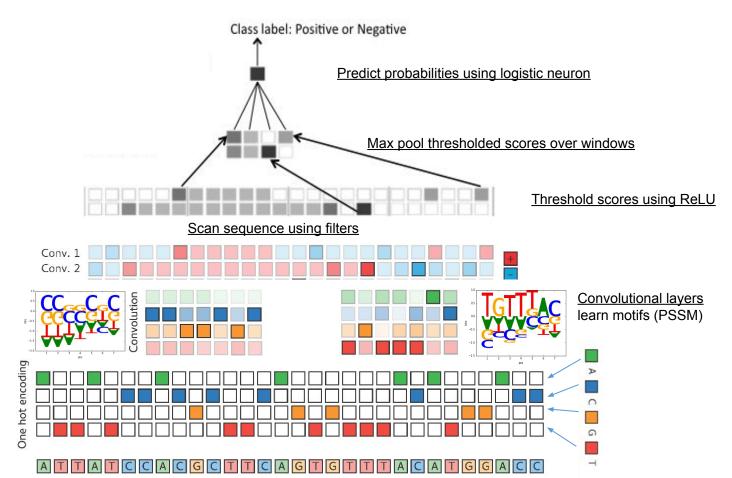
$$Y = h(Z)$$

$$M(Z) = \frac{1}{2} + \frac{1}{2$$

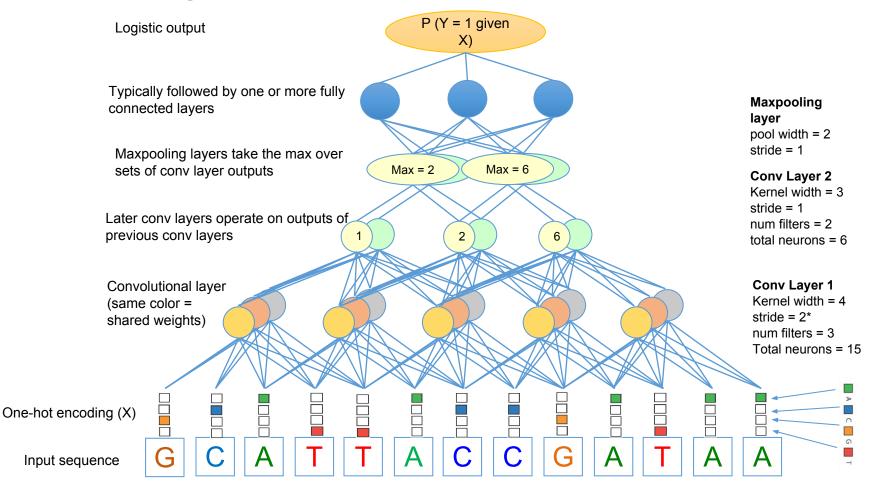
w, b are the parameters of this neuron Training means learning the optimal w's and b

3

Biological motivation of DCNN



Deep convolutional neural network



Training a neural network

Learning weights via optimization algorithm called stochastic gradient descent

Optimization Objective: Minimize error (**loss**) on the training datasets i.e. difference between true Y and predicted output F(X)

- An incremental algorithm:
 - Present examples (\mathbf{x}_i, y_i) one at a time,
 - Modify w slightly to increase the log-probability of observed y_i :

$$\mathbf{w} := \mathbf{w} + \eta \frac{\partial}{\partial \mathbf{w}} \log p\left(y_i \,|\, \mathbf{x}_i; \mathbf{w}\right)$$

where the *learning rate* η determines how "slightly".

Measures of performance

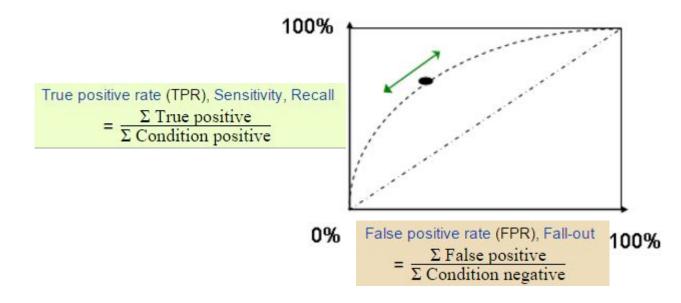
TP, FP, FN, TN are absolute counts of true positives, false positives, false negatives and true negatives

- N sample size
- ▶ $N^+ = FN + TP$ number of positive examples
- ▶ $N^- = FP + TN$ number of negative examples
- $O^+ = TP + FP$ number of positive predictions
- $O^- = FN + TN$ number of negative predictions

outputs\ labeling	y = +1	y = -1	Σ
f(x) = +1	TP	FP	O +
f(x) = -1	FN	TN	0-
Σ	N ⁺	N ⁻	N

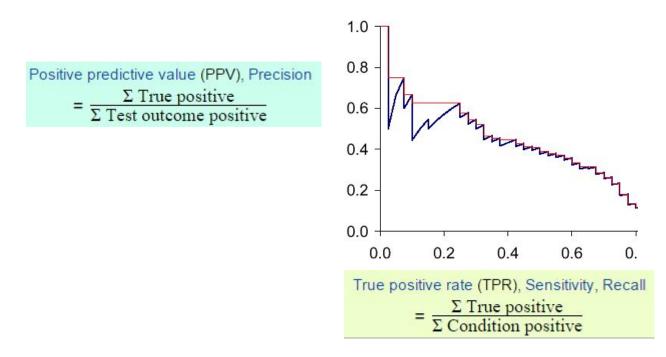
Measures of performance

Area under the Receiver operating curve (auROC) Compares sensitivity (recall) to false positive rate (1-specificity) at various thresholds auROC = 1 (Perfect classifier) auROC = 0.5 (Random classifier)

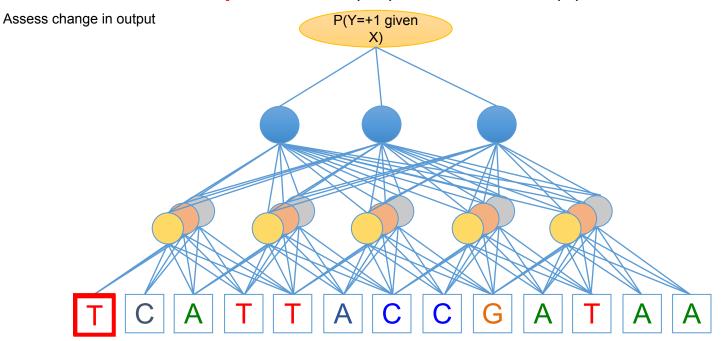


Measures of performance

Area under Precision-Recall Curve (auPRC) Compares precision (1- false discovery rate) to recall (sensitivity) at various thresholds auPRC = 1 (Perfect classifier)



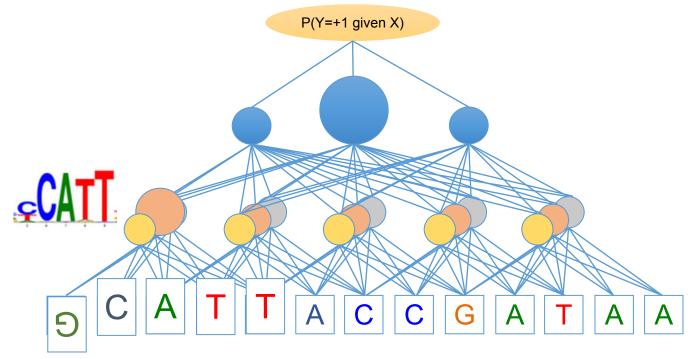
Interpretation: In-silico mutagenesis



Output: Bound (+1) vs. not bound (0)

Input: One-hot encoded DNA sequence

Interpretation: DeepLIFT (Deep learning feature importance)



https://arxiv.org/abs/1605.01713

Starting the tutorial

Sign in	
Username:	
lastname_firstname	
Password:	

Logging in and starting the tutorial

1. Point your browser to

http://mitra.stanford.edu/dragonn.html

This should bring up a login page to the dragonn client:

2. Your username is of the format **lastname_firstname** based on the information you used to register for this tutorial.

The password is dragonn

Starting the tutorial

3. Click on the **workshop_tutorial.ipynb** link inside the examples folder to open up the jupyter notebook for the tutorial.

Files	Running Clusters		
Select i	ems to perform actions on them.		Upload New - 3
	•		
	🗅 bak		
	🗅 build		
	C conda_recipe		
	🗅 dist		
	🗅 dragonn		
	🗅 dragonn.egg-info		
	🗅 examples		

Starting the tutorial

File Edit	View Insert	Cell Kernel I	felp	Python 2
B + %	∞ в + +	Run Run and Select Belo	Cell Toolbar: None *	
		Run and Insert Belo	v	
	-	Run All		
	DragoNN	Run All Above	Neural Network (DNN) Models for Regulatory	
	Genomics	Run All Below		
	Overview	Cell Type	•	
	In this tutorial, we	Current Output	,	
	1) Simulate	All Output	, with heterodimer motif grammars encoding heterodimer TF binding	
	3) Explore n		NN models to learn the heterodimer motif grammars from raw data ct the heterodimer grammar from a trained model ules.	
In [1]:	<pre>%load_ext autor %autoreload 2</pre>	reload		
	<pre>from examples.t get_availab get_simulat get_simulat train_Seque interpret_S</pre>	tion_function, p tion_data, inspe	<pre>print_available_simulations, rint_simulation_info, ct_SequenceDNN, get_SequenceDNN, eDNN_learning_curve, test_SequenceDNN, er_centric,</pre>	
) %matplotlib in]	line		

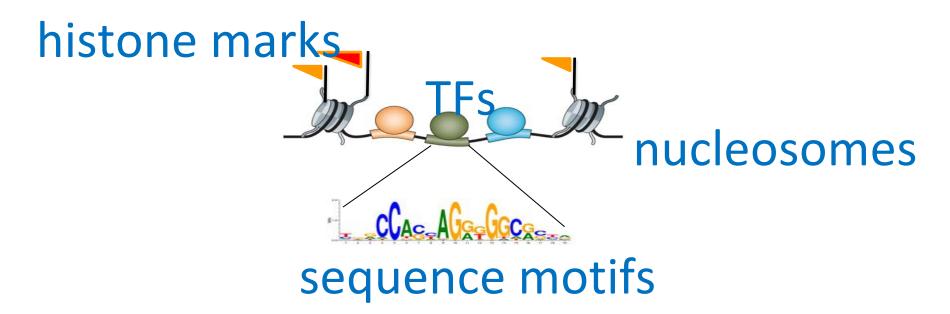
4. Click the "Run All" in the "Cell" dropdown menu

Sequence Simulations

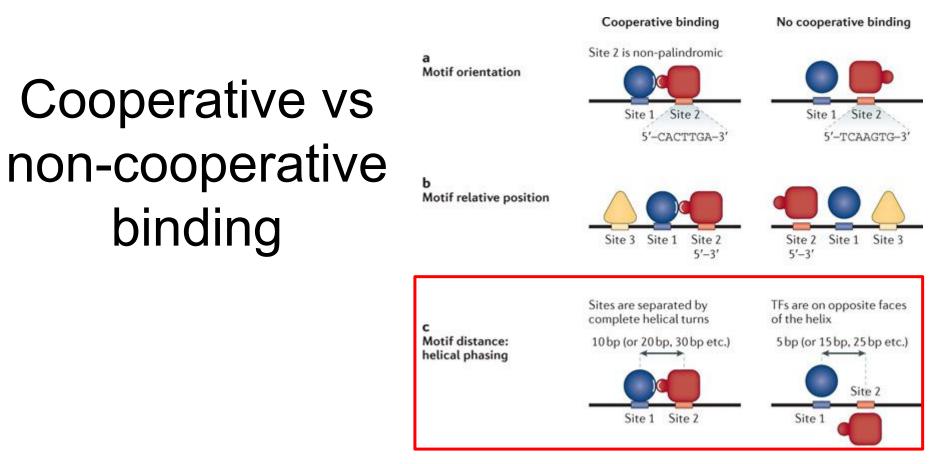
In [2]: print_available_simulations()

Simulation Name	"Positive" class sequence	"Negative" class sequence
simulate_single_motif_detection	Contains a single motif	Random sequence
simulate_motif_counting	Contains many instances of a motif	Contains few instances of a motif
simulate_motif_density_localization	Contains multiple instances of a motif in center	Contains multiple instances of a motif throughout
simulate_multi_motif_embedding	Contains multiple motifs, one instance of each	Random sequence
simulate_differential_accessibility	Contains a group of motifs	Contains a different group of motifs
simulate_heterodimer_grammar	Contains two motifs positioned closely	Contains two motifs positioned independently

Transcription factor (TF) binding in regulatory elements



Adapted from Shlyueva et al. (2014) Nature Reviews Genetics.



Nature Reviews | Genetics

taken from François Spitz & Eileen E. M. Furlong. Nature Review Genetics 13, 613-626 (2012).

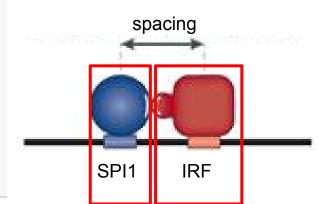
Defining Simulation Parameters

In [3]: print_simulation_info("simulate_heterodimer_grammar")

motif1	:	str,	encode	motif	name			
motif2	:	str,	encode	motif	name			
seq_le	ngt	h : :	.nt, le	ngth o	f sequ	ence		
min_sp	aci	ng :	int, m	inimum	inter	motif	spacing	1
max_sp	aci	ng :	int, m	aximum	inter	motif	spacing	I
num_por	s :	int,	numbe	r of po	ositiv	e class	s sequen	ices
num_ne	g :	int,	numbe	r of ne	egatic	e class	s sequen	ices
			Floot	CC Em	antion	in has		sequence

In [4]: heterodimer grammar simulation_parameters = {

```
"motif1": "SPI1_known4",
"motif2": "IRF_known20",
"seq_length": 500,
"min_spacing": 2,
"max_spacing": 2,
"num_pos": 10000,
"num_neg": 10000,
"GC_fraction": 0.4}
```



Defining Simulation Parameters

In [3]: print_simulation_info("simulate_heterodimer_grammar")

```
Parameters

motifl : str, encode motif name

motif2 : str, encode motif name

seq_length : int, length of sequence

min_spacing : int, minimum inter motif spacing

max_spacing : int, maximum inter motif spacing

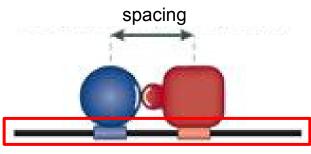
num_pos : int, number of positive class sequences

num_neg : int, number of negatice class sequences

GC fraction : float, GC fraction in background sequence
```

```
In [4]: heterodimer_grammar_simulation_parameters = {
```

```
"motif1": "SPI1_known4",
"motif2": "IRF known20",
"seq_length": 500,
"min_spacing": 2,
"max_spacing": 2,
"num_pos": 10000,
"num_neg": 10000,
"GC_fraction": 0.4}
```



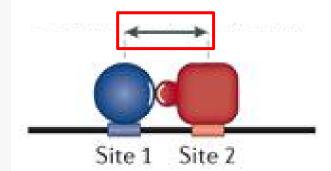
SPI1 IRF

Defining Simulation Parameters

In [3]: print_simulation_info("simulate_heterodimer_grammar")

```
In [4]: heterodimer_grammar_simulation_parameters = {
    "motif1": "SPI1_known4",
```

```
"motif2": "IRF_known20",
"seq_length": 500,
"min_spacing": 2,
"max_spacing": 5,
"num_pos": 10000,
"num_neg": 10000,
"GC fraction": 0.4}
```



Getting Simulation Data

In	[5]:	simulation_data = get_simulation_data("simulate_heterodimer_grammar"	heterodimer_grammar_simulation_parameters	
			Simulation name	Simulation parameters	

In [6]:	simulati	on_dat	ta.X_t	train	[⁰ , :	. :,	:10]					
Out[6]:	array([[[1.,	0.,	0.,	1.,	1.,	0.,	1.,	0.,	0.,	0.],	Α
		[0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.,	0.],	С
		[0.,	1.,	0.,	0.,	0.,	1.,	0.,	0.,	0.,	0.],	G
	,	[0.,	0.,	1.,	0.,	0.,	0.,	0.,	1.,	1.,	1.]]])	Т
Underlying												
Sequence:		"A	G	Т	А	А	G	А	Т	Т	Τ"	

Convolutional Neural Networks

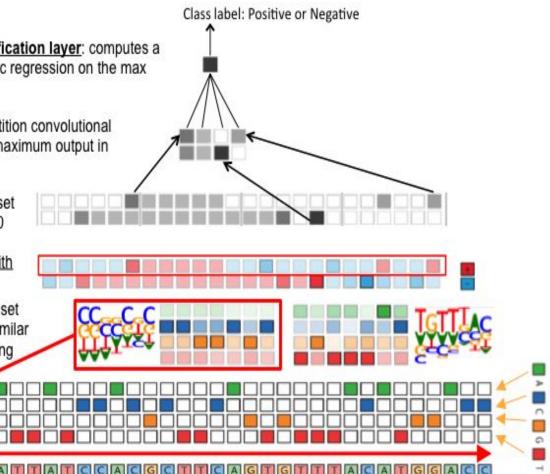
Fully connected classification layer: computes a probability using a logistic regression on the max pooling layer outputs

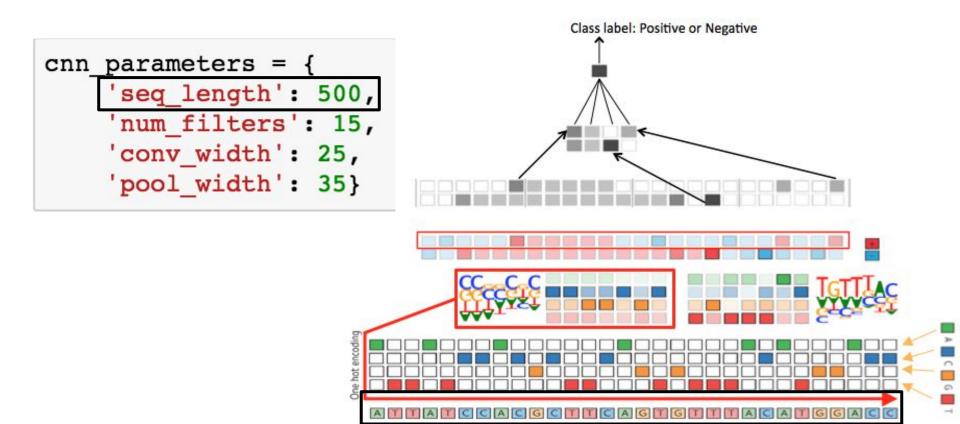
Max pooling layer: Partition convolutional filter outputs and keep maximum output in each partition

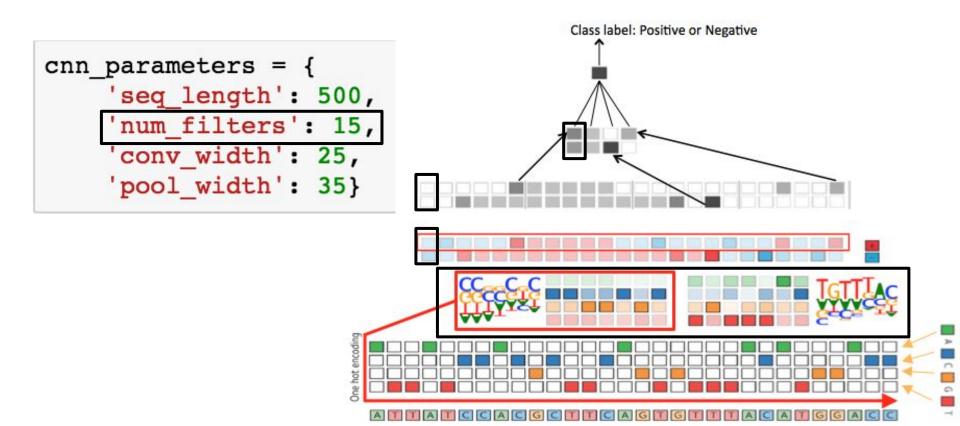
ReLU transformation: set negative motif scans to 0

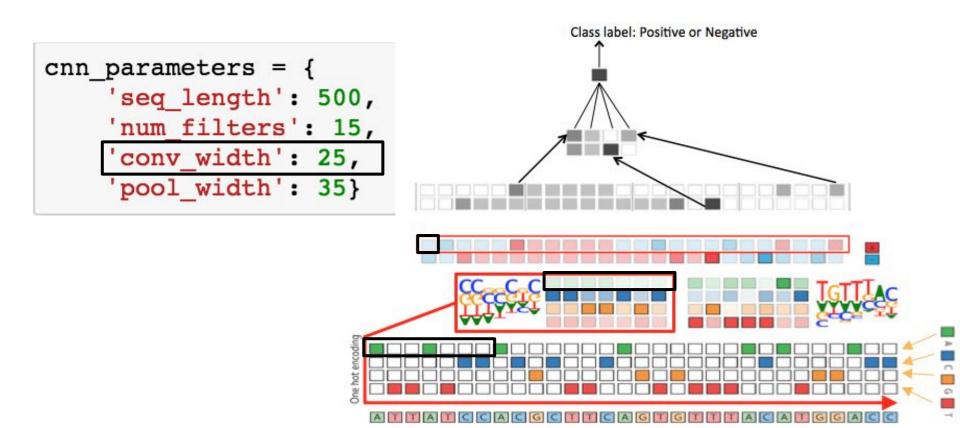
Scan sequence using with convolutional filters

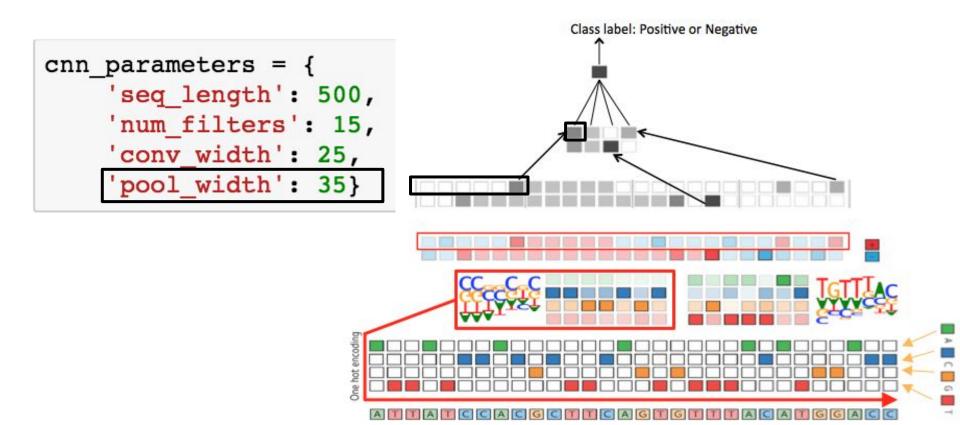
Convolutional layer: a set of convolutional filters similar to position specific scoring matrices (PSSMs)



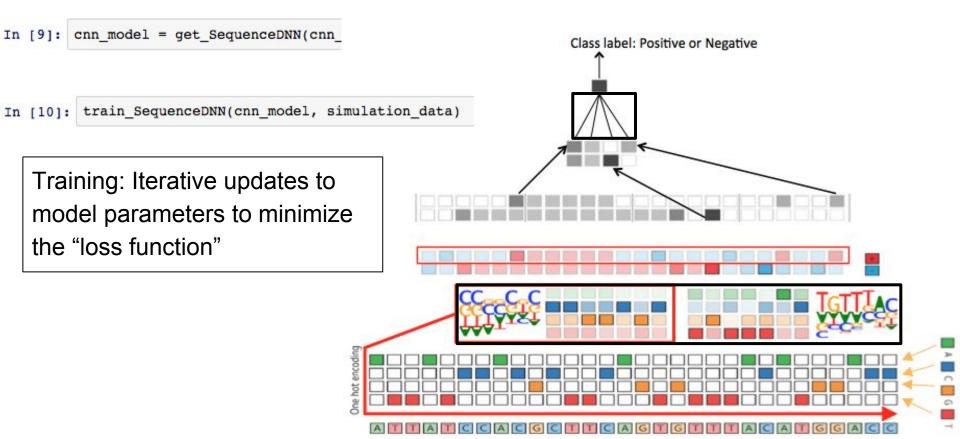




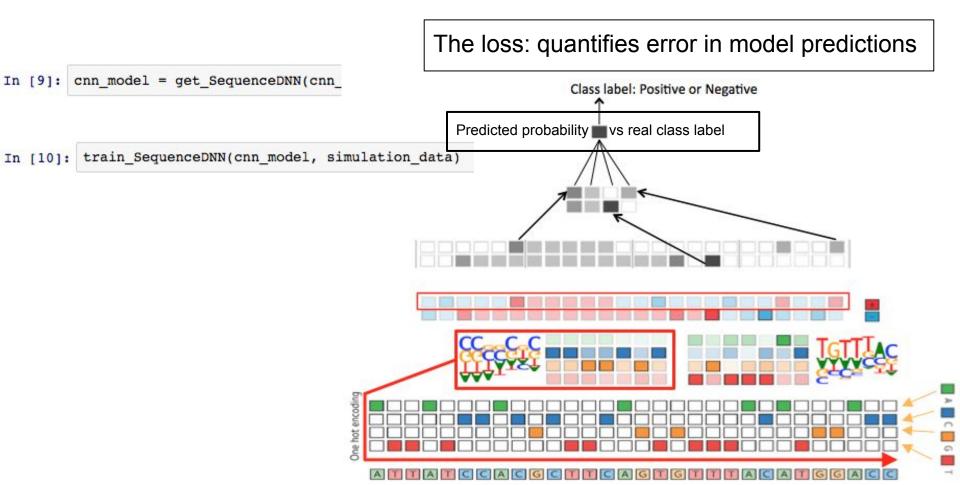




Training a DNN model

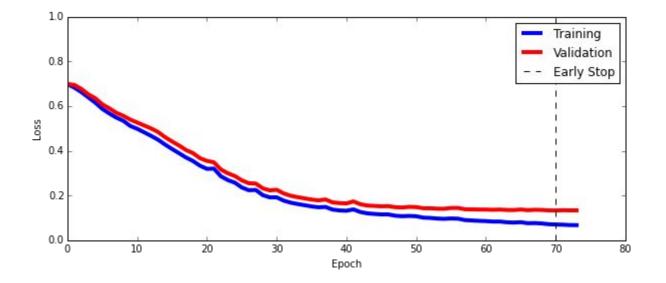


Training a DNN model

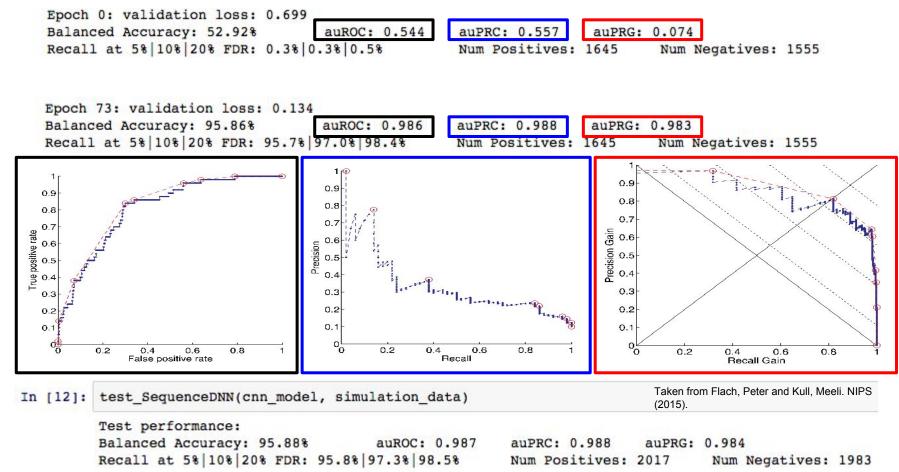


When to stop training?

In [11]: SequenceDNN_learning_curve(cnn_model)



Performance Metrics

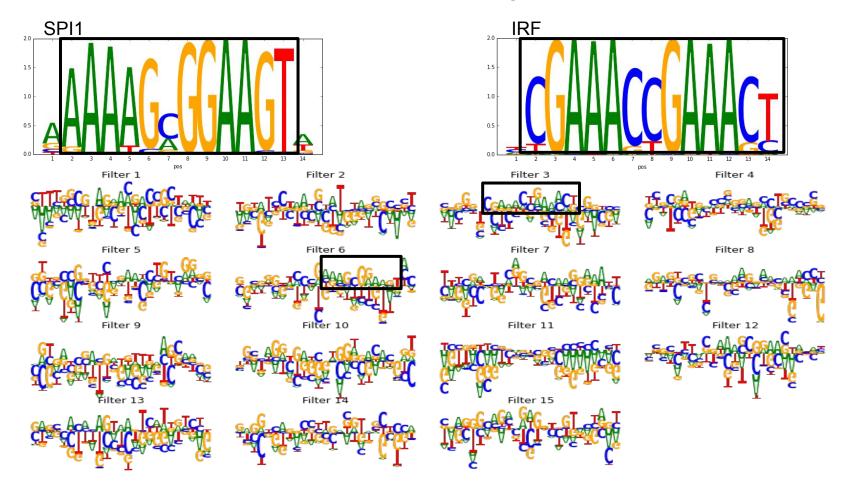


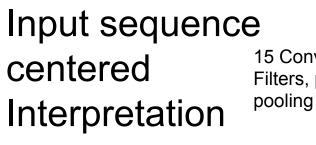
Interpreting DNN models: two broad approaches

- 1. Model-centered approach: interpret model parameters directly
 - Example: inspect learned convolutional filters and try to infer sequence motifs from them

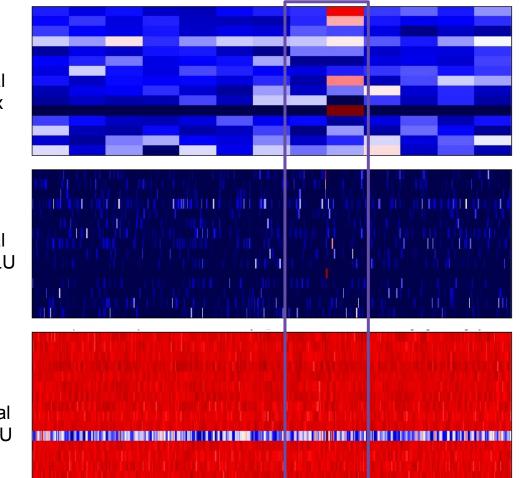
- 2. Input sequence-centered approach: sequence-specific model activity
 - Example: propagate input sequence through the model, inspect outputs in convolutional and max pooling layer, try to infer sequence properties from those output

Model-centered Interpretation





15 Convolutional Filters, post max pooling



Position

Motif sites

4.5 4.0

3.5 3.0 2.5

2.0

1.5

1.0

0.5

4.5 4.0 3.5 3.0

2.5

1.5 1.0 0.5

-12

-16 -20 -24

15 Convolutional Filters, post ReLU

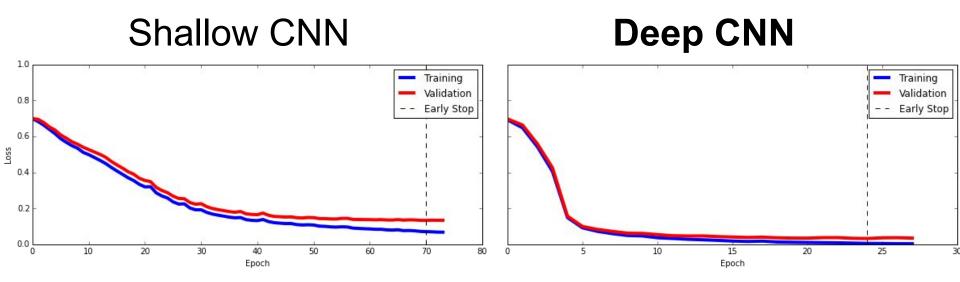
15 Convolutional Filters, pre ReLU

Repeat with a deeper 3-layered CNN

```
In [14]: deep_SequenceDNN_parameters = {
    'seq_length': 500,
    'use_deep_CNN': True, # we have to specify this option when using a deep CNN
    'num_filters': 15,
    'conv_width': 15, # we decrease width of convolutional filters in the 1st layer
    'num_filters_2': 15, # define number and width of convolutional filters in 2nd and 3rd layers
    'conv_width_2': 15,
    'num_filters_3': 15,
    'conv_width_3': 15,
    'pool_width': 35,
    'verbose': 0} # we set verbose to 0 to suppress printouts during training
    deep_cnn = get_SequenceDNN(deep_SequenceDNN_parameters)
```

In [15]: train_SequenceDNN(deep_cnn, simulation_data)
SequenceDNN_learning_curve(deep_cnn)
test_SequenceDNN(deep_cnn, simulation_data)
interpret_SequenceDNN_distributed(deep_cnn, simulation_data)

Faster and Better Learning



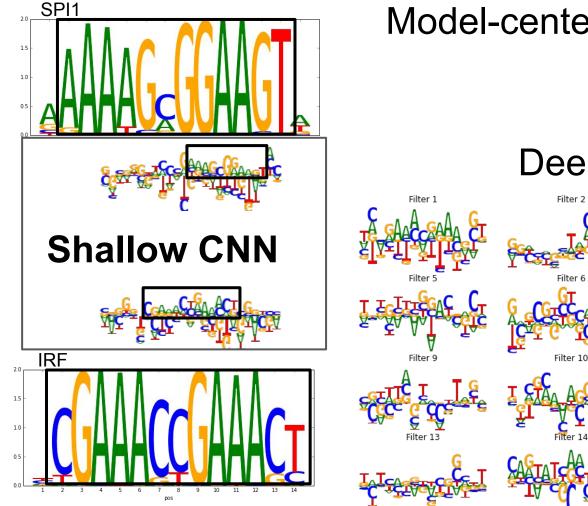
Better Test Performance Metrics

Shallow CNN

Test performance:				
Balanced Accuracy: 95.88%	auROC: 0.987	auPRC: 0.988	auPRG:	0.984
Recall at 5% 10% 20% FDR: 95.8	38 97.38 98.58	Num Positives:	2017	Num Negatives: 1983

Deep CNN

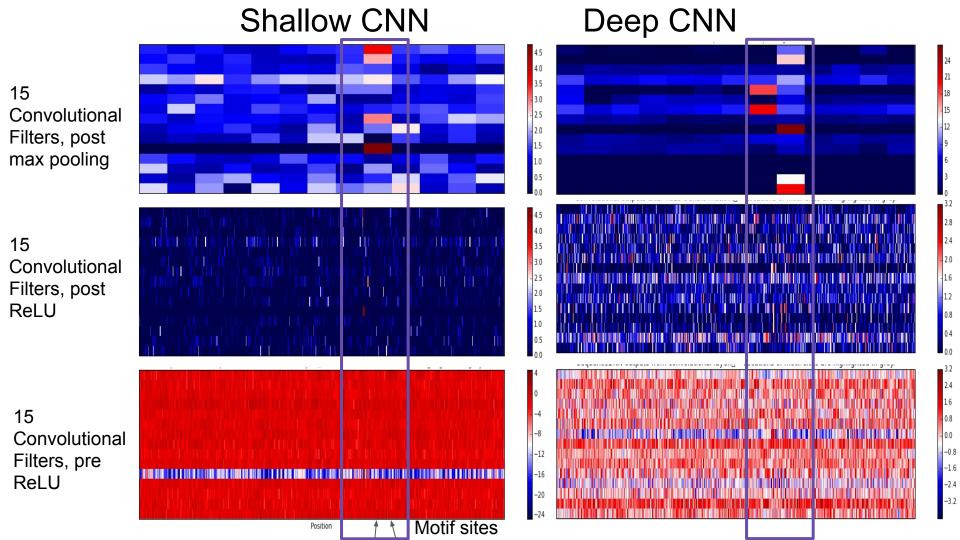
Test performance: Balanced Accuracy: 99.17% auROC: 0.999 auPRC: 0.999 auPRG: 0.999 Recall at 5% 10% 20% FDR: 100.0% 100.0% Num Positives: 2017 Num Negatives: 1983 Plotting simulation motifs...

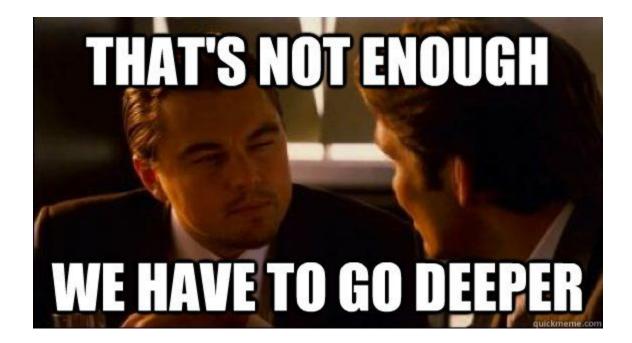


Model-centered Interpretation

Filter 4

Filter 11



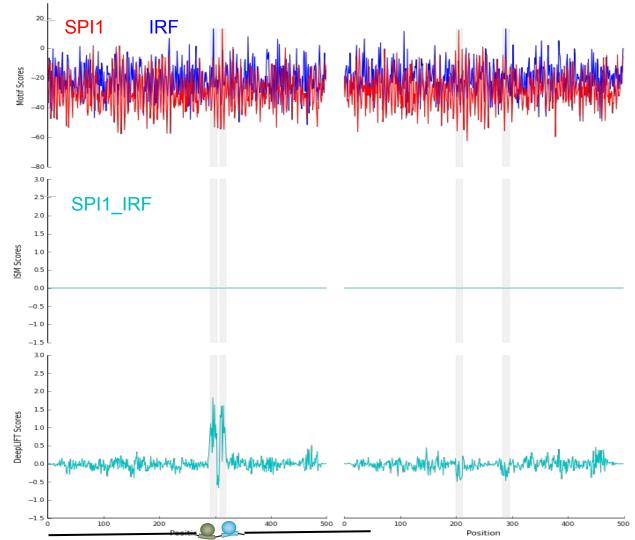


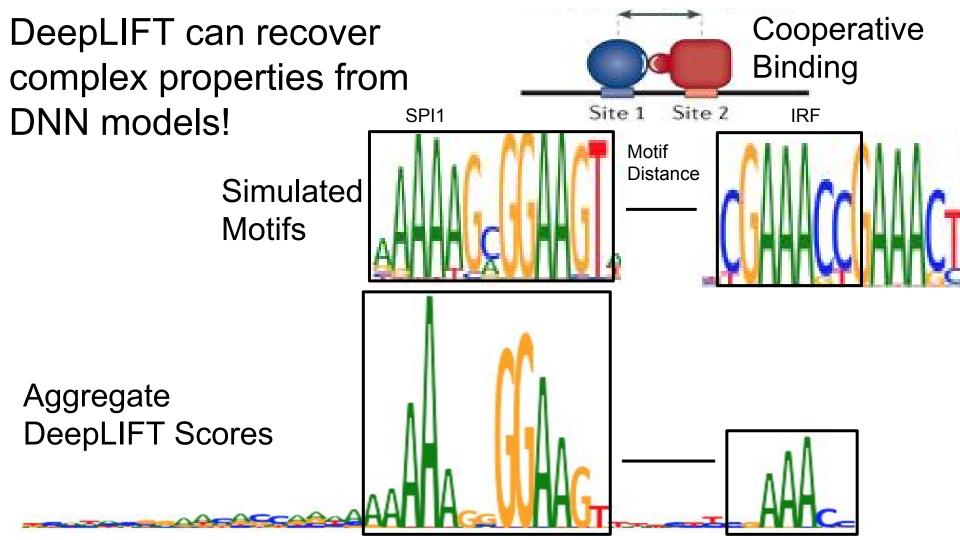
Integrative Interpretation of DNN Models

- Interpretation through internal layers DNN layers, both model-centric and input sequence-centric, suffers from the distributed nature of DNNs

- Solution: "integrate" using DeepLIFT and in-silico mutagenesis (ISM)
 - DeepLIFT: score each nucleotide based on its net contribution to the final fully connected layer, integrating across all filters and layers in between
 - ISM: mutate one nucleotide at a time, compute difference in prediction, score based on average difference in prediction

Integrative Input sequence scores





Investigate the one layered CNN model used here for the following simulations:

single motif detection simulation of TAL1 in 1000bp sequence with 40% GC content
 motif density localization simulation of 2-4 TAL1 motif instances in the central of 150bp of a total
 1000bp sequence with 40% GC

Key questions:

1) What could explain the difference in ISM's sensitivity to the TAL1 motif sequence between the simulations?

2) What does that tell us about the the scope of ISM for feature discovery? Under what conditions is it likely to show sensitivity to sequence features?

Starter code is provided in the tutorial notebook.

To access this tutorial on Amazon AWS

- 1. Create an account on Amazon Web Services: <u>www.aws.amazon.com/signin</u>
- You will need to launch an EC2 instance using the public AMI
 "DragonnTutorialPublic"
- 3. Go to Services > EC2 > AMIs
- 4. Select "Public Images"
- 5. In the search bar, enter "DragonnTutorialPublic"
- 6. Click "Launch" and follow the instructions. Note: you must select instance type "g2.2xlarge" or "g2.8xlarge" to create an instance with GPU's

Launch Actions	*										Ð	¢	0
Public images 👻	Q search : DragonnTutoria	al 🔿 Add filter								0 K <	1 to 1 of 1	> >	1
Name	AMI Name	AMI ID	Source	Owner	Visibility	Status	Creation Date	Platform	Root Device T	Virtualization			
	DragonnTutorialPublic	ami-c9a7dda9	484134676711/D	484134676711	Public	available	June 7, 2016 at 8:27:46 AM	Other Linux	ebs	hvm			

Acknowledgements

Deep Learners at Kundajelab:

Avanti Shrikumar Nathan Boley Peyton Greenside Chris Probert Nasa Armstrong Irene Kaplow Michael Wainberg Oana Ursu Rahul Mohan

Anna Shcherbina

Chuan Sheng Foo

Anshul Kundaje