Recurrent Somatic Mutations in Regulatory and Other Regions of Human Cancer Genomes

Michael Snyder Stanford University June 9, 2016

Most Effort on Cancer is Performed on Exomes

Two Approaches

- Look for mutation enrichment using ENCODE data and fixed windows
- 2) Look for increased density of mutations in variable sized windows

Are there functionally important mutations in regulatory regions in cancer?

Collin Melton

RegulomeDB Scores Are Used to Annotate Mutations with Regulatory Information

http://www.regulomedb.org

Workflow to Identify Cancer Mutations from WGS Data: 436 Genomes

- 1. McKenna et al. Genome Res. 2010.
- 2. Cibulskis K et al. Nat Biotechnol. 2013.
- 3. Koboldt, D. et al. Genome Res. 2012.

Identified Mutations in 436 Individuals from 8 Cancer Types

BRCA: Breast Cancer

GBM: Glioblastoma Multiforme

HNSC: Head and Neck Squamous Cell Carcinoma KIRC: Kidney Clear Cell Renal

Carcinoma

LUAD: Lung Adenomcarcinoma

LUSC: Lung Squamous Cell

Carcinoma

OV: Ovarian Cancer UCEC: Uterine Corpus Endometrial Carcinoma

Are Mutations Enriched in Regulatory Regions?

Fraction of Mutations in Regulatory Regions

VS

Fraction of Simulated Mutations in Regulatory Regions

Need to Simulate Mutations with Matched Covariates because Mutation Probability is not Uniform Across Samples and Genomic Sites

Variation Across Samples

Variation With Expression

Variation with Replication Timing

Variation With Base Type

General Characterization: Sites Bound by Specific Transcription Factors are Enriched for Mutations

Occasionally Specific Residues within a Motif are Selectively Mutated

Mutations in TF Binding Sites Usually Reduce the PWM Match Score

Ref: AATTGCGTCACT — Ref. Score

Are Mutations Recurrently Found at Specific Genomic Loci?

Approach to Identify Recurrently Mutated Sites

Significant Repeatedly Mutated Loci (~123 Regulatory)

Significant Repeatedly Mutated Loci (~200)

Cancer Associated
Genes in Vicinity of
Regulatory Mutations

GNAS, INPP4B, MAP2K2, BCL11B, NEDD4L, ANKRD11, TRPM2, P2RY8

Mutations Alter Enhancer Function in Validation Assays

Two Approaches

- 1) Look for mutation enrichment in fixed windows
- 2) Look for increased density of mutations in variable sized windows
- DBSCAN
- 2. ~4500 exomes
- 3. Corrections for sequence, replication etc

Density scores strongly enrich for known cancer genes

- Computed density scores permit strong selective enrichments for somatically-altered Cancer Gene Census (CGC) genes:
 - For somatic cancer genes (SCGs) affected by point mutations (*n*=158) enrichments climb up to 120x.
 - Even at extreme density scores: 10% of genes are novel cancer drivers.

Significantly mutated regions (SMRs) highlight the varied mechanisms of oncogenic misregulation

* SMRs classified into 185 high-, 496 medium-, and 191 low-confidence sets with corresponding (63x, 6.5x, 5.0x) enrichments for known cancer genes.

Oncogenic mutations often alter regulatory binding sites

* Sequence enrichment in small (≤25 bp) SMRs reveals enrichments for cancer-

Oncogenic mutations often alter non-coding/regulatory sites

18% of bladder cancers harbor transitions in the 5' UTR of *TBC1D12*. (Mutated in WGS of 7 cancer types, including 2/20 bladder cancers, 2/40 lung adenomas, and 3/172 breast cancers.)

Structural mapping reveals recurrently targeted interfaces

- * SMRs localized to *n*=17 interfaces of protein-protein or DNA-protein interactions (15/17 are known cancer-driver interfaces).
- * SMRs pinpoint a novel interface of oncogenic alteration in a **histone H3/TRIM33** interface (with putative survival implications).

SMRs in *PIK3CA* are differentially mutated across cancers

- * 6 SMRs in the catalytic subunit (α) of the phosphoinositide 3-kinase oncogene, PIK3CA (p110α), including particularly recurrent alterations in the helical (PIK3CA.5) and kinase (PIK3CA.6) domains¹.
- * SMRs (PIK3CA.2, PIK3CA.3) between the ABD and linker domains are affected in up 14% of endometrial carcinomas (~7% inside the α-helix).
- * PIK3CA.2 (G106V, K111E) and PIK3CA.3 (G118D) mutations have been shown to be kinase-activating.

Conclusions

- 1) Can identify mutations in regulatory regions that are enriched for mutations
- 2) Often near genes involved in cancer
- 3) Mutations often disrupt binding motifs of specific TFs.
- 4) Using density analysis can find subsets of coding regions that are preferentially mutated in cancer; these can be cancer specific.
- 5) Will want to incorporate these into genome and clinical analyses

Acknowledgments

Collin Melton

Jason Reuter (reporter assays)

Damek Spacek

Carlos Araya

Can Cenik

Alan Boyle (RegulomeDB)

Will Greenleaf

TCGA and Volunteer Patients for Data

Genomics and Personalized Medicine

What Everyone Needs to Know®

Michael Snyder

Just released!

Available from Amazon.com