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Most Effort on Cancer is Performed on Exomes

Whole Genome Exome
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Two Approaches

1) Look for mutation enrichment using ENCODE data
and fixed windows

2) Look for increased density of mutations in
variable sized windows



Are there functionally important
mutations in regulatory regions in
cancer?
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RegulomeDB Scores Are Used to
Annotate Mutations with Regulatory
Information
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http://www.regulomedb.org
Boyle et al. Genome Res. 2012.



Workflow to Identify Cancer Mutations
from WGS Data: 436 Genomes

Aligned Tumor and Normal
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1. McKenna et al. Genome Res. 2010.
2. Cibulskis K et al. Nat Biotechnol. 2013.
3. Koboldt, D. et al. Genome Res. 2012.



ldentified Mutations in 436 Individuals

log10(# of Mutations)

from 8 Cancer Types

BRCA: Breast Cancer

GBM: Glioblastoma Multiforme
HNSC: Head and Neck
Squamous Cell Carcinoma
KIRC: Kidney Clear Cell Renal
Carcinoma

LUAD: Lung Adenomcarcinoma
LUSC: Lung Squamous Cell
Carcinoma

QV: Ovarian Cancer

UCEC: Uterine Corpus
Endometrial Carcinoma



Are Mutations Enriched in
Regulatory Regions?
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Need to Simulate Mutations with Matched Covariates
because Mutation Probability is not Uniform Across Samples
and Genomic Sites
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General Characterization: Sites Bound by
Specific Transcription Factors are Enriched for

Mutations

Normalized

Enrichment
(|

< (N O

1HO3
XOuM
Vd830
44VIN
€493
14N
41H
g34d0
Oy
1% NAJ
addg3o
34930
9d830
844930

10



Occasionally Specific Residues within a
Motif are Selectively Mutated
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Mutations in TF Binding Sites Usually
Reduce the PWM Match Score
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Are Mutations Recurrently Found
at Specific Genomic Loci?

Cancer Samples
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Approach to Identify Recurrently
Mutated Sites

Mutation Data for All Patients

‘ Probability Region is Mutated k or more times
Sites or Regions Patien't and Site S_p_eciﬁc ‘
of Interest Mutation Probability Model
Filter to Remove Common SNPs
Vector of Mutation Probabilities ‘
in Region for all Patients Filter to Remove Likely Mapping Errors

¢

Poisson Binomial Model

Filter to Keep Only Sites with FDR < 0.05
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-Log10(p-value)

Significant Repeatedly Mutated Loci
(~123 Regulatory)
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-Log10(p-value)

Significant Repeatedly Mutated Loci
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Mutations Alter Enhancer Function in

Validation Assays
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Two Approaches

1)

2) Look for increased density of mutations in
variable sized windows

1. DBSCAN
2. ~4500 exomes
3. Corrections for sequence, replication etc



Density scores strongly enrich for known
cancer genes
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* Computed density scores permit strong selective enrichments for somatically-altered Cancer Gene Census
(CGC) genes:

» For somatic cancer genes (SCGs) affected by point mutations (n=158) enrichments climb up to 120x.

» Even at extreme density scores: 10% of genes are novel cancer drivers.
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Significantly mutated regions (SMRs) highlight the varied
mechanisms of oncogenic misregulation
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*  SMRs classified into 185 high-, 496 medium-, and 191 low-confidence sets with corresponding (63x, 6.5x,
5.0x) enrichments for known cancer genes.
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Oncogenic mutations often alter regulatory
binding sites
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Oncogenic mutations often alter non-coding/regulatory sites
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* 18% of bladder cancers harbor transitions in the 5’ UTR of TBC1D12. (Mutated in WGS of 7 cancer types,
including 2/20 bladder cancers, 2/40 lung adenomas, and 3/172 breast cancers.)
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Structural mapping reveals recurrently
targeted interfaces

C

A

P=
0.0078

AT

A

LaYuaine e
s 02 24006 20 10
, ,

2 $wx Wl
)

Lo

* SMRs localized to n=17 interfaces of protein-protein or DNA-protein interactions (15/17 are known cancer-
driver interfaces).

* SMRs pinpoint a novel interface of oncogenic alteration in a histone H3/TRIM33 interface (with putative
survival implications).
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SMRs in PIK3CA are differentially mutated across cancers
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* 6 SMRs in the catalytic subunit (a) of the phosphoinositide 3-kinase oncogene, PIK3CA (p110a), including
particularly recurrent alterations in the helical (PIK3CA.5) and kinase (PIK3CA.6) domains’.

* SMRs (PIK3CA.2, PIK3CA.3) between the ABD and linker domains are affected in up 14% of endometrial
carcinomas (~7% inside the a-helix).

* PIK3CA.2 (G106V, K111E) and PIK3CA.3 (G118D) mutations have been shown to be kinase-activating.

(1) Huang CH, et al. (2007). Science
219 1744 1719
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Conclusions

1) Can identify mutations in regulatory regions that are
enriched for mutations

2) Often near genes involved in cancer

3) Mutations often disrupt binding motifs of specific TFs.
4) Using density analysis can find subsets of coding regions
that are preferentially mutated in cancer; these can be

cancer specific.

5) Will want to incorporate these into genome and clinical
analyses
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