ChromNet: Learning the human chromatin
network from all ENCODE ChlP-seq data

http://chromnet.cs.washington.edu
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The chromatin network*
What we call the network of factors that interact to regulate the genome

*Lundberg et al. Genome Biology 2016



Motivating example
lllustrating the value of conditional dependence
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Measuring many factors is important
Conditional dependence get better with a more complete model
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What if we didn’t measure C? Then A and B get connected.



Group graphical model
Making conditional dependence robust to redundancy
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Redundant variables cause lost or unstable connections.




Measuring accuracy improvements
Recovery of known interactions and relationships
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Context specificity

ldentifying which genomic regions drive an interaction

We removed ZNF143 from ChromNet then checked
which genomic regions drove the CTCF-SIX5 edge.
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Global network
All cells types integrated into a single network.
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Explore, and even integrate your own data!
http://chromnet.cs.washington.edu
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Histone mark / writer connections
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