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Why is this of any interest? 

Statistical genetics of cancer 

Evolution 

Biology 

Methods 

As a key parameter 

Of mutation rate 

Of DNA repair 

Of DNA replication 



Genetic mapping and mapping by natural 
selection 

Most of gene mapping methods (linkage, 
association) rely on recombination and are 

only applicable to sexual systems 

Many methods to detect selection signals 
(selective sweeps, extended haplotypes) are 

similarly limited to sexual populations 

What about cancer? 



Identifying selected genes/functional 
units by recurrence 



This signature of selection is completely (!!!) 
confounded by mutation rate variation 

 
“Non-functional” regions may not serve as an ideal 

null model if mutation rate is correlated with 
“functionality” 

 
Other samples may not serve as an ideal null model 

if mutation rate variation is sample-specific 
 

All of this is exacerbated in the search for non-
coding drivers! 

Everything is more difficult in search for 
non-coding drivers 



Somatic cancer mutation density is 
associated with replication timing 

Lawrence, et al., Nature 2013 



Somatic mutation rate depends on 
expression 

Mutation rate is reduced in transcribed regions compared to  
intergenic regions  

The reduction of mutation rate is proportional to expression level 

The effect is attributed to transcription coupled repair (TCR),  
which is supported by the strand bias 

Hanawalt & Spivak, Nat Rev Mol Cell Biol  2008 





Predicting local mutation rate at 1Mb scale 

Polak, Karlic et al., Nature 2015 



Tissue specificity 



55-86% of regional variation is explained 
by 184 chromatin tracks from more than 

80 tissues 



Cell type specificity 
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Mutation rate is reduced in regulatory 
regions marked by accessible chromatin 
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Implicating nucleotide excision repair (NER) 

melanoma genomes
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High mutation density in TFBS due to NER 
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Nucleotide excision repair is impaired by binding of 
transcription factors to DNA
Radhakrishnan Sabarinathan1, Loris Mularoni1, Jordi Deu-Pons1, Abel Gonzalez-Perez1 & Núria López-Bigas1,2

Somatic mutations are the driving force of cancer genome evolution1. 
The rate of somatic mutations appears to be greatly variable across 
the genome due to variations in chromatin organization, DNA 
accessibility and replication timing2–5. However, other variables that 
may influence the mutation rate locally are unknown, such as a role 
for DNA-binding proteins, for example. Here we demonstrate that 
the rate of somatic mutations in melanomas is highly increased at 
active transcription factor binding sites and nucleosome embedded 
DNA, compared to their flanking regions. Using recently available 
excision-repair sequencing (XR-seq) data6, we show that the higher 
mutation rate at these sites is caused by a decrease of the levels of 
nucleotide excision repair (NER) activity. Our work demonstrates 
that DNA-bound proteins interfere with the NER machinery, which 
results in an increased rate of DNA mutations at the protein binding 
sites. This finding has important implications for our understanding 
of mutational and DNA repair processes and in the identification of 
cancer driver mutations.

The accumulation of somatic mutations in cells results from the 
interplay of mutagenic processes, both internal and exogenous, and 
mechanisms of DNA repair. Detailed early biochemical studies7,8 and 
recent efforts to sequence the genomes of tumours from different can-
cer types9,10 have shed light on this. Mutational signatures associated 
with various tumorigenic mechanisms have been identified across 
cancer types11, and genomic features such as chromatin organization, 
DNA accessibility, and DNA replication timing2–5 have been associated 
with the variation of somatic mutation rates at the megabase scale. Two 
recent studies proposed a causal relationship between the accessibility of 
chromosomal areas to the DNA repair machinery and their mutational 
 burden. Supek and Lehner12 pointed to variable repair of DNA mis-
matches as the basis of the megabase scale variation of somatic mutation 
rates across the human genome. Polak et al.4 attributed lower somatic 
mutation rates at DNase I hypersensitive sites (DHS) than at their flank-
ing regions and the rest of the genome in cell lines and primary tumours 
to higher accessibility to the global genome repair machinery. Similarly, 
nucleo some occupancy has been linked to regional mutation rate vari-
ation between nucleosome-bound DNA and linker regions13–16, while 
two recent studies found a relation between transcription factor binding 
sites (TFBS) and nucleotide substitution rates. Reijns et al.17 detected 
increased levels of nucleotide substitutions around TFBS in the yeast 
genome, which was attributed to DNA-binding proteins acting as partial 
barriers to the polymerase δ  mediated displacement of polymerase α  
synthesized DNA. Katainen et al.18 found that CTCF/cohesin-binding 
sites are frequently mutated in colorectal tumours and in a small subset 
of tumours of other cancer types, and suggested that these mutations 
are probably caused by challenged DNA replication under aberrant 
conditions.

To determine the impact of DNA-binding proteins on DNA repair, 
we analysed the somatic mutation burden at TFBS in the genomes of 
38 primary melanomas sequenced by The Cancer Genome Atlas10,19. 
We found that the mutation rate was approximately five times higher 

in active TFBS, that is, those overlapping DHS (Fig. 1a) than in their 
flanking regions (P <  2.2 ×  10−16, chi-square test). We determined that 
this elevated mutation rate could not be explained by the sequence 
context (Fig. 1a), and that it did not occur at inactive TFBS (Fig. 1a 
and Extended Data Fig. 1), indicating that it is directly related to the 
protein being bound to DNA. Furthermore, this enrichment for muta-
tions appeared at the active binding sites of most transcription fac-
tors (TFs) (Fig. 1b, Extended Data Fig. 2 and Supplementary Table 1); 
the signal was discernible in most individual melanomas (Fig. 1c and 
Supplementary Table 2), and it increased with genome-wide mutation 
rate. Moreover, the signal was also apparent across the genome of a 
sample taken from normal human skin20 (Fig. 1c), which indicates 
that the accumulation of mutations in TFBS results of a normal process 
rather than a pathogenic effect in tumour cells.

Most somatic mutations in melanocytes are caused by exposure to 
ultraviolet (UV) radiation11. UV radiation causes specific DNA lesions 
or DNA photoproducts of cyclobutane pyrimidine dimers (CPDs) and 
pyrimidine–pyrimidone (6–4) photoproducts (6–4PPs), at the sites of 
dipyrimidines21. As expected, C >  T (G> A) mutations predominated 
in melanomas over other nucleotide changes (Fig. 1d), both within 
TFBS and at their flanks. This could be explained by either a faulty 
DNA repair7,8 or a higher probability of UV induced lesions22,23 at  
protein-bound DNA.

Next, we focused on active TFBS in distal regions from transcription 
start sites (TSS), and again found increased mutation rate at binding 
sites, flanked by periodic peaks of mutation rate observed at a distance 
of ∼170 bp, which coincides well with the size of the DNA wrapped 
around nucleosomes (∼146 bp) and the linker DNA, and could not 
be explained by sequence context (Fig. 2a). When we superimposed 
the nucleosomes positioning signals from the ENCODE data24 and 
these mutation rate peaks, we verified that their positions matched well. 
Furthermore, we found that the peak of mutation rate observed at the 
centre of DHS regions occurred exclusively at TFBS and was absent 
from DHS sites without TFBS (Fig. 2b and Extended Data Fig. 3). This 
corroborated the model that whatever process was causing the increase 
in the mutation rate, it required that the proteins be bound to the DNA.

We then determined if the cause of the higher mutation rate in TFBS 
and nucleosomes was the reduced accessibility to the protein-bound 
DNA of the NER machinery. Non-repaired lesions would be bypassed 
by polymerases carrying out translesional DNA synthesis, thus result-
ing in mutations25. To test this, we assembled nucleotide-resolution 
maps of the NER activity of the two products of UV-induced DNA 
damage, CPDs and 6–4PPs, generated by ref. 6 using XR-seq in irra-
diated skin fibroblasts6. In XR-seq, the excised ∼ 30-mer around the 
site of damage generated during nucleotide excision repair is isolated 
and subjected to high-throughput sequencing. When we analysed the 
genome-wide signal of this NER map, we found a strong decrease in 
the amount of CPD and 6–4PP repair at the centre of TFBS (Fig. 3a 
and Extended Data Fig. 4a), compared to their flanking regions. The 
decrease was apparent both in wild-type cells (NHF1), and CS-B 

1Research Program on Biomedical Informatics, IMIM Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain. 2Institució Catalana 
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Differential DNA repair underlies mutation hotspots 
at active promoters in cancer genomes
Dilmi Perera1*, Rebecca C. Poulos1*, Anushi Shah1, Dominik Beck1, John E. Pimanda1,2 & Jason W. H. Wong1

Promoters are DNA sequences that have an essential role in 
controlling gene expression. While recent whole cancer genome 
analyses have identified numerous hotspots of somatic point 
mutations within promoters, many have not yet been shown to 
perturb gene expression or drive cancer development1–4. As such, 
positive selection alone may not adequately explain the frequency 
of promoter point mutations in cancer genomes. Here we show 
that increased mutation density at gene promoters can be linked 
to promoter activity and differential nucleotide excision repair 
(NER). By analysing 1,161 human cancer genomes across 14 cancer 
types, we find evidence for increased local density of somatic point 
mutations within the centres of DNase I-hypersensitive sites (DHSs)  
in gene promoters. Mutated DHSs were strongly associated with 
transcription initiation activity, in which active promoters but not 
enhancers of equal DNase I hypersensitivity were most mutated 
relative to their flanking regions. Notably, analysis of genome-wide 
maps of NER5 shows that NER is impaired within the DHS centre 
of active gene promoters, while XPC-deficient skin cancers do not 
show increased promoter mutation density, pinpointing differential 

NER as the underlying cause of these mutation hotspots. 
Consistent with this finding, we observe that melanomas with an 
ultraviolet-induced DNA damage mutation signature show greatest 
enrichment of promoter mutations, whereas cancers that are not 
highly dependent on NER, such as colon cancer, show no sign of 
such enrichment. Taken together, our analysis has uncovered the 
presence of a previously unknown mechanism linking transcription 
initiation and NER as a major contributor of somatic point 
mutation hotspots at active gene promoters in cancer genomes.

To examine systematically the frequency of somatic point muta-
tions at gene promoters, we curated mutation calls from 1,161 whole 
cancer genomes across 14 cancer types from The Cancer Genome 
Atlas (TCGA), International Cancer Genome Consortium (ICGC) 
and published mutations6 (Fig. 1a, see Supplementary Table 1 for full 
list of samples and sources). Using cell-type-specific epigenomic data, 
we calculated the average mutation density across promoter DHSs, 
enhancer DHSs, genic and heterochromatin regions (Methods).  
In many cancer types, the average mutation density at promoter DHSs 
was higher than that of enhancer DHSs, with melanoma, lung and 

1Prince of Wales Clinical School and Lowy Cancer Research Centre, UNSW Australia, Sydney 2052, Australia. 2Department of Haematology, Prince of Wales Hospital, Sydney 2031, Australia.
*These authors contributed equally to this work.
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Figure 1 | Pan-cancer analysis of mutation distribution across the 
genome reveals enrichment at promoter DHSs. a, Summary of the 
number of samples and median mutations associated with each cancer 
type analysed, with a histogram for each cancer type showing the total 
mutation count across each sample. CLL, chronic lymphocytic leukaemia. 
b, Mutation density across selected genomic regions for each cancer type. 

DHSs are defined as ±75 bp of the DHS centre. c, Comparison of mutation  
density within promoter DHSs and enhancer DHSs relative to their 
flanking regions (±1 kb). d, Distribution of promoter DHS/DHS flank 
ratios of individual cancer samples with at least 8,602 mutations separated 
by cancer type. Box-plot shows median, quartiles, maximum and 
minimum. Individual cancer samples are shown as grey dots.

© 2016 Macmillan Publishers Limited. All rights reserved



Overall, mutation density is low in early 
replicating regions, active regulatory elements 

and highly expressed genes. 

Overall, mutation … but this is on average 

This is aggregate. How about the effects of 
individual mutagens?  

How about individual samples? 



Example: APOBEC mutagenesis 

APOBECs are cytidine deaminases involved 
in cancer mutagenesis (primarily APOBEC3A) 

APOBEC creates strand-coordinated mutation 
clusters. APOBEC acts on ssDNA.  

APOBEC has a characteristic signature: 
TCW→TTW or TCW→TGW  



Focus on APOBEC 

Enrichment of APOBEC signature and of 
cluster density varies by cancer types 

It also varies by sample within cancer type 

APOBEC activity results on sample-specific 
mutation properties 



For mutations in clusters 

119 breast and 24 lung cancer samples Kazanov et al., Cell Reports 2015 



Dependency on the enrichment of the 
APOBEC signature 



We can model mutations within APOBEC 
signature as a mixture of APOBEC induced 

mutations and other mutations 

Modelling a mixture of mutation origins 



Joint analysis of all samples 



The effect of epigenomic features on cancer 
mutations may be mutagen-dependent 

 
 

APOBEC mutations are unique in the 
genomic distribution 

 
Mutation models have to be sample-specific 

Conclusions 



Cluster regulatory elements by all covariates 
 
 

Assume Poisson statistics within clusters 
 
 

Use “wrong” tissue types as a control to 
derive FDR 

Search for non-coding drivers 

D’Antonio, Weghorn et al., (in review) 



Search for non-coding drivers 



Search for non-coding drivers 



Precisely estimating local mutation rate is very 
difficult 

 
It is practical to model a set of samples rather 

than a cancer type or an individual sample 
 

We opt for a hierarchical model 

In search for a better statistical approach 



In search for a better statistical approach 

Fitting a parametric model of 
mutation rate heterogeneity 

Posterior distribution for “functional” 
sites 

Data across genomes 

Known covariates 

“Neutral” density  
in the locus 



Modelling heterogeneity of mutation rates 
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Modelling heterogeneity of mutation rates 

MEL
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Finding genes under selection (LUSC) 

LUSC
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Finding genes under selection (LUAD) 

LUAD
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Finding genes under selection (MEL) 
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Understanding mutation rate heterogeneity 
helps understand basic biology and develop 

statistical methods of cancer genomics  
 

Mutation rate varies by cancer type and by 
sample 

 
Epigenomic features are key 

 
We need better statistical approaches 

Conclusions 
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