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Why is this of any interest?

Statistical genetics of cancer > Methods

Evolution <
Of mutation rate
Biology <

As a key parameter

Of DNA repair

Of DNA replication



Genetic mapping and mapping by natural

selection

Most of gene mapping methods (linkage,
association) rely on recombination and are
only applicable to sexual systems

Many methods to detect selection signals
(selective sweeps, extended haplotypes) are
similarly limited to sexual populations

What about cancer?



Identifying selected genes/functional
units by recurrence




Everything is more difficult in search for

non-coding drivers

This signature of selection is completely (!!!)
confounded by mutation rate variation

“Non-functional” regions may not serve as an ideal
null model if mutation rate is correlated with
“functionality”

Other samples may not serve as an ideal null model
If mutation rate variation is sample-specific

All of this is exacerbated in the search for non-
coding drivers!



Somatic cancer mutation density is

associated with replication timing
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Somatic mutation rate depends on

expression

Mutation rate is reduced in transcribed regions compared to
iIntergenic regions

The reduction of mutation rate is proportional to expression level

The effect is attributed to transcription coupled repair (TCR),
which is supported by the strand bias

Hanawalt & Spivak, Nat Rev Mol Cell Biol 2008
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Predicting local mutation rate at 1Mb scale

melanoma C-->T mutation density
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55-86% of regional variation is explained

by 184 chromatin tracks from more than
80 tissues
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Cell type specificity
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Mutation rate is reduced in regulatory

regions marked by accessible chromatin

mutation density
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Implicating nucleotide excision repair (NER)

NER
. genomes with mutations in NER genes . genomes without mutations in NER genes

melanoma genomes
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High mutation density in TFBS due to NER

LETTER

doi:10.1038/naturel7661

Nucleotide excision repair is impaired by binding of
transcription factors to DNA

Radhakrishnan Sabarinathan!, Loris Mularoni', Jordi Deu-Pons!, Abel Gonzalez-Perez! & Nuria Lopez-Bigas!?

LETTER

doi:10.1038/nature17437

Differential DNA repair underlies mutation hotspots
at active promoters in cancer genomes

Dilmi Perera'*, Rebecca C. Poulos'*, Anushi Shah!, Dominik Beck!, John E. Pimanda'? & Jason W. H. Wong!



Overall, mutation density is low in early
replicating regions, active regulatory elements
and highly expressed genes.

This is aggregate. How about the effects of
individual mutagens?

How about individual samples?



Example: APOBEC mutagenesis

APOBECs are cytidine deaminases involved
iIn cancer mutagenesis (primarily APOBEC3A)

APOBEC creates strand-coordinated mutation
clusters. APOBEC acts on ssDNA.

APOBEC has a characteristic signature:
TCW—-TTW or TCW—-TGW



Focus on APOBEC

Enrichment of APOBEC signature and of
cluster density varies by cancer types

It also varies by sample within cancer type

APOBEC activity results on sample-specific
mutation properties



For mutations in clusters
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Dependency on the enrichment of the

APOBEC signature

Fraction of mutations

Fraction of mutations

Regression slope in sample
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Modelling a mixture of mutation origins

We can model mutations within APOBEC
signature as a mixture of APOBEC induced
mutations and other mutations

a(s)(Bao + Barf (X)) + (1 — a(s))(Bvo + Bni1f (X)), if x eTCW

M S)"'{ Buo + BurfGO),  if x € TCW
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Conclusions

The effect of epigenomic features on cancer
mutations may be mutagen-dependent

APOBEC mutations are unique in the
genomic distribution

Mutation models have to be sample-specific



Search for non-coding drivers

Cluster regulatory elements by all covariates

Assume Poisson statistics within clusters

Use “wrong’” tissue types as a control to
derive FDR

D’Antonio, Weghorn et al., (in review)



Search for non-coding drivers
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Search for non-coding drivers

14,087 mutated DHS
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In search for a better statistical approach

Precisely estimating local mutation rate is very
difficult

It is practical to model a set of samples rather
than a cancer type or an individual sample

We opt for a hierarchical model



In search for a better statistical approach

Fitting a parametric model of

: <— Dat
mutation rate heterogeneity ala across genomes

Known covariates

“Neutral” density
In the locus

e

Posterior distribution for “functional”
sites




Modelling heterogeneity of mutation rates
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Modelling heterogeneity of mutation rates
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Finding genes under selection (LUSC)

Known cancer genes
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Finding genes under selection (LUAD)

_ Known cancer genes
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Finding genes under selection (MEL)
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Conclusions

Understanding mutation rate heterogeneity
helps understand basic biology and develop
statistical methods of cancer genomics

Mutation rate varies by cancer type and by
sample

Epigenomic features are key

We need better statistical approaches
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