

U.S. Department of Health and Human Services

Education across NHGRI's Genomic Medicine Research Portfolio

U.S. Department of Health and Human Services
National Institutes of Health
National Human Genome Research Institute

Teri Manolio, M.D., Ph.D.

Division of Genomic Medicine, NHGRI

August 4, 2016

NACHGR Genomic Medicine Working Group Members

NHGRI defines genomic medicine as "an emerging medical discipline that involves using genomic information about an individual as part of their clinical care and the health outcomes and policy implications of that clinical use."

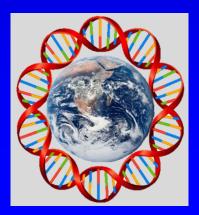
ivially i Cilling Ot. ouc

Dan Roden
Marc Williams

Vanderbilt Geisinger

Eric Green
Teri Manolio
Laura Rodriguez

NHGRI NHGRI NHGRI


GM VIII: NHGRI's Genomic Medicine Programs, June 2015

GM VII: Genomic CDS, Oct 2014

GM VI: Global Leaders, Jan 2014

Genomic Medicine Colloquium, June 2011 GM II: Forming Collaborations, Dec 2011

GM IX: Bedside Back to Bench,

GM V: Federal Strategies, May 2013

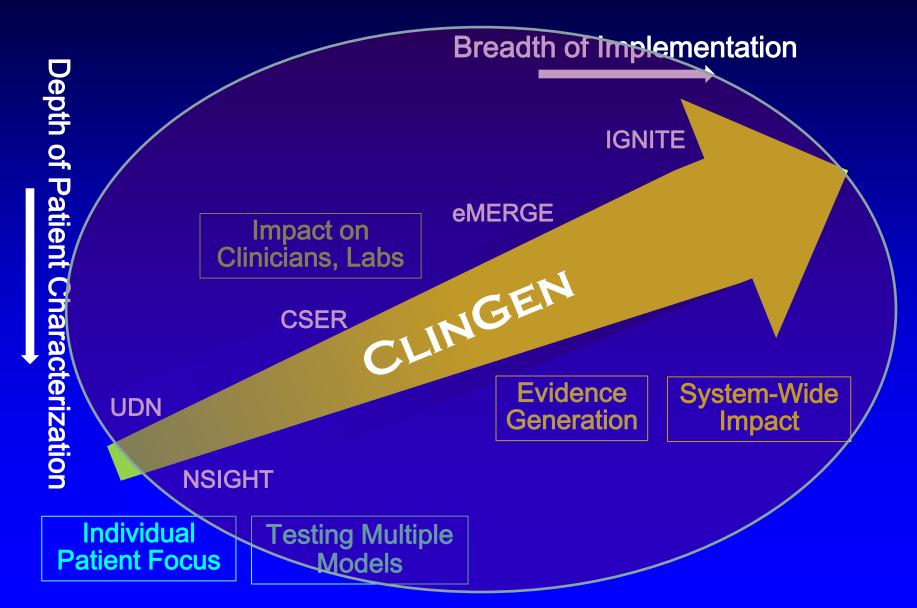
The College of American Pathologists Debra G.B. Leonard, MD, PhD, FCAP

Policy Framework

Coverage Policy

Payment Policy

GM IV: Physician Education, Jan 2013



NHGRI's Genomic Medicine Research Program

Program	Goal	Σ\$Μ	Years
UDN ¹	Diagnose rare and new diseases by expanding NIH's Undiagnosed Diseases Program	121	FY13-17
NSIGHT ²	Explore possible uses of genomic sequence information in the newborn period	25	FY13-17
CSER ³	Explore infrastructure, methods, and issues for integrating genomic sequence into clinical care	83	FY12-16
eMERGE ⁴	Use biorepositories with EMRs for genomics; (III) assess penetrance of 106 clinically relevant genes in 25,000 individuals, develop e-phenotypes, CDS	135	FY07-18
IGNITE ³	Develop and disseminate methods for incorporating patients' genomic findings into their clinical care	32	FY13-16
ClinGen⁴	Develop and disseminate consensus information on genes and variants relevant to clinical care	28	FY13-16

¹NIH Common Fund; ²Co-Funded by NICHD; ³Co-Funded by NCI; ⁴Co-Funded by OD.

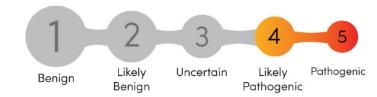
Spectrum of Genomic Medicine Implementation: Intensity vs. Breadth

8 sites with Training Opportunities

- Fellowship programs
- Student trainees
- Volunteers

Train: clinical fellows, residents, undergraduates, masters students, postdoctoral fellows, and faculty

Included in: case conferences, case review, clinical consults, and sequence analysis


Practitioner Education Working Group

Introduction and Overview Pathoge 3 Variant Commo Negative 6 Medical Pharma Carrier

2: Pathogenic and Likely Pathogenic Results Related to Patient Symptoms

Key Points:

- Pathogenic or likely pathogenic variants in disease genes related to phenotype means that an etiology of the patient's symptoms has been identified.
- Clinically, both pathogenic and likely pathogenic variants are acted upon as if they are likely disease causing.
- De novo loss of function alleles are frequently diseases causing.
- De novo missense variants may or may not be pathogenic and require computational analysis and comparison with the patient's phenotype.

Often when a whole exome or whole genome sequence is done, the primary goal is to answer a diagnostic question in a patient with a specific set of symptoms (phenotype). When a genetic

In progress, July 2016. Courtesy K East, S Plon, D Messersmith, CSER Practitioner Education WG.

Genetic Counseling Working Group

Illustrative case studies in the return of exome and genome sequencing results Amendola et al. *Per. Med.* (2015) 12(3):283-95.

Table 1. Summary of themes, lessons learned and challenges specific to the return of exome and genome sequencing results.

Theme	Lesson(s) learned	Challenges specific to exome and genome sequencing
Managing expectations in pretest and post-test counseling, negative findings do not mean the condition is not genetic	Elicit perceived goals and expectations both during informed consent and after return of results to identify and address misconceptions	Belief that all pathogenic genetic variation can be identified and the clinical significance will be clear
Context matters: follow-up for recommendations from IFs in healthy and ill patient-participants	Both healthy and ill patient-participants who receive IFs may face challenges with adherence to screening/testing recommendations. Ill patient-participants may focus on the diagnostic results and over-interpret a negative result as 'good news'	Limited pretest discussion of the unanticipated condition(s) and implications of results. (III) Emphasizing importance of follow-up for medically actionable IFs in the context of more acute concerns. (Healthy) Lack of personal/family history may affect motivation and access to care

CSER Genetic Counseling Working Group

emerge network

ELECTRONIC MEDICAL RECORDS AND GENOMICS

451

Number of network publications 47

Number of phenotypes developed 55,028

Number of participants in the Network Cohort

Text Size: a a a

MyResults.org

Search ...

FOR HEALTH PROFESSIONALS

Azathioprine

Clopidogrel

Warfarin

CAG Child Survey

EDGE (Test)

EDGE: All Genes

► 10p12.31

EDGE: By Disease

EDGE: By Drug

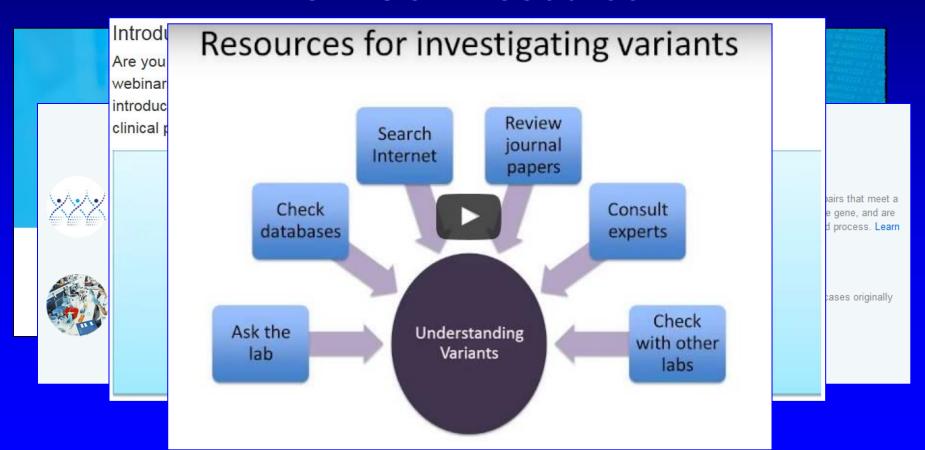
EDGE Disease Genes List

Search EDGe Q

Search

Phenotype	Locus
3 MCC deficiency	NARS2 and MCCC2 (current link 10p12)
Absent speech	MAP4K4
Acrodysostosis	PRKAR1A
ADHD, Anxiety	ANK3
Adult-onset autosomal recessive ataxia	CLN5
Agenesis of the corpus callosum	H3F3A
Aggressive behaviors	CELSR2COG1/KIF2A
AicardiGoutieres syndrome	ADAR

IGNITE SPARK Toolbox


TPMT Diplotype	Phenotype	Metabolism Status	Clinical Priority
*1/*1	Normal Activity	Normal Metabolism	Low
*1/*2	Reduced Activity	Impaired Metabolism	Medium
*1/*3C	Reduced Activity	Impaired Metabolism	Medium
*1/*3B	Reduced Activity	Impaired Metabolism	Medium
*1/*3A	Reduced Activity	Impaired Metabolism	Medium
*2/*2	No Activity	Very Impaired Metabolism	High
*2/*3C	No Activity	Very Impaired Metabolism	High
*2/*3B	No Activity	Very Impaired Metabolism	High
*3C/*3C	No Activity	Very Impaired Metabolism	High
*3B/*3B	No Activity	Very Impaired Metabolism	High
*3A/*3A	No Activity	Very Impaired Metabolism	High
*3A/*3B	No Activity	Very Impaired Metabolism	High
*3A/*3C	No Activity	Very Impaired Metabolism	High
*3A/*2	No Activity	Very Impaired Metabolism	High

https://ignite-genomics.org/spark-toolbox/clinicians/

Education, Engagement, and Counseling Working Group

Fostering clinician engagement with the ClinGen Resource

Many Thanks...

GenomMed Programs Investigators and Participants!

Ebony Bookman	Heather Junkins	Carol Bult	
Joy Boyer	Melpi Kasapi	Rex Chisholm	
Lisa Brooks	Rongling Li	TACK OFFISHORF	
Erin Currey	Nicole Lockhart	Geoff Ginsburg	
Cecilia Dupecher	Jean McEwen		
C. Fletcher-Hoppe	Donna Messersmith	Howard Jacob	
Eric Green	Erin Ramos	Howard McLeod	
Jyoti Gupta	Laura Rodriguez		
Lucia Hindorff	Simona Volpi	Mary Relling	
Carolyn Hutter	Robert Wildin	Dan Roden	
Jean Jenkins	Ken Wiley	Dan Nouen	
Dave Kaufmann	Anastasia Wise	Marc Williams	