

How do you know you've found the gene?

- The causative variant is found in affected individuals and not in normals
- Different mutations in the same gene in different families with the same disease

Centre d'Etude Polymorphisme duHumain (CEPH)

(Center for the Study of Human Polymorphism, Paris)

- Set of standard normal reference families, chosen for maximally informative family structure – 4 grandparents and many sibs
- Used to construct the normal human genetic linkage map – worldwide effort
- Genotype data at 3,000 11,000 loci available on each individual
 - Enables genetic linkage studies without additional genotyping
- 48/60 CEPH families from Utah

Search of the chromosome 7 region

Bitter taste transduction is believed to be mediated by G protein-coupled receptor (GPCR) signaling pathways

- Numerous GPCR's located in this region
 - 16 genes sequenced : 9 TAS2R genes 7 OR-like genes
 - 8 individuals evaluated
 - Many sequence differences identified
 - One difference was observed to absolutely correlate with phenotype in chromosome 7-linked families
 - Unrelated non-tasters also appeared to carry this difference
 - Suggested a founder effect and linkage disequilibrium

60 evenly spaced single nucleotide polymorphisms (SNP's) were genotyped to evaluate linkage disequilibrium

- Unrelated C.E.P.H. individuals Northern European
 - 27 Families
 - 269 individuals

Unrelated NIH individuals

- All races / ethnicities
- 94 individuals
 - Chose 46 individuals for Linkage Disequilibrium (LD) measurement

Current Topics in Genome Analysis Fall 2003

SNP		Amino Acid		1
Allele	Frequency	Position (a.a.)	a.a. encoded	Docation in predicted protein
C G	.36 .64	49	Proline Alanine	1 st intracellular loop
С Т	.38	262	Alanine Valine	6 th transmembrane
G	.82	200	Valine	7 th
	Allele C G C T G	Allele Frequency C .36 G .64 C .38 T .62 G .38	Allele Frequency Position (a.a.) C .36 49 G .64 49 C .38 262 T .62 G .38 296	AlleleFrequencyPosition (a.a.)a.a. encodedC.3649ProlineG.6449AlanineC.38262AlanineT.62ValineG.38296

Taste Phenotypes				
Haplotypes	Sample	No. of subjects		
		Nontasters	Tasters	
AVI / AVI	Utah	38	14	
	NIH	21	0	
AVI / AAV	Utah	10	7	
	NIH	1	3	
* / PAV	Utah	3	108	
		4	58	

* indicates any haplotype found in the sample. No AAV homozygotes were observed in either sample

Protein structural difference predictions

- Integral membrane proteins are not conducive to traditional crystalographic approaches
- Employed computational predictive methods

Current Topics in Genome Analysis Fall 2003

- PTC has been intensively studied by population geneticists for 70 years
- Numerous predictions about PTC gene variation have been made
- Can these studies provide additional understanding about gene function?

Conclusion/paradox

- The non-taster allele (along with the taster allele) has come to high frequency because it's selected for
- How could a non-functional allele of a protective gene be selected for?

Collaborators					
University of Utah Mark Leppert Hilary Coon Andrew Peiffer Stephen Wooding	NIDCD/NIH Un-kyung Kim				
Lynn Jorde Stanford University Neil Risch	California Institute of Technology Wely Floriano William Goddard				
Eric Jorgenson					