Current Topics in Genome Analysis Fall 2003

Week 4 Biological Sequence Analysis I

Andy Baxevanis, Ph.D.

Overview

- Week 4: Comparative methods and concepts
- Similarity vs. Homology
- Global vs. Local Alignments
- Dotplots
- Scoring Matrices
- BLAST
- Week 5: Predictive methods and concepts
- Profiles, patterns, motifs, and domains
- Secondary structure prediction
- Structures: VAST, Cn3D, and de novo prediction

Why do sequence alignments?

- Provide a measure of relatedness between nucleotide or amino acid sequences
- Determining relatedness allows one to draw biological inferences regarding
- structural relationships
- functional relationships
- evolutionary relationships

Defining the Terms

- The quantitative measure: Similarity
- Always based on an observable
- Usually expressed as percent identity
- Quantify changes that occur as two sequences diverge
- substitutions
- insertions
- deletions
- Identify residues crucial for maintaining a protein's structure or function
- High degrees of sequence similarity might infer
- a common evolutionary history
- possible commonality in biological function

Defining the Terms

- The conclusion: Homology
- Genes are or are not homologous (not measured in degrees)
- Homology implies an evolutionary relationship
- The term "homolog" may apply to the relationship
- between genes separated by the event of speciation (orthology)
- between genes separated by the event of genetic duplication (paralogy)

Defining the Terms

- Orthologs
- Sequences are direct descendants of a sequence in a common ancestor
- Most likely have similar domain structure, threedimensional structure, and biological function
- Paralogs
- Related through a gene duplication event
- Provides insight into "evolutionary innovation" (adapting a pre-existing gene product for a new function)

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Defining the Terms

Overview

- Week 4: Comparative methods and concepts
- Similarity vs. Homology
- Global vs. Local Alignments
- Dotplots
- Scoring Matrices
- BLAST
- Week 5: Predictive methods and concepts
- Profiles, patterns, motifs, and domains
- Secondary structure prediction
- Structures: VAST, Cn3D, and de novo prediction

Determining Sequence Similarity

- Global sequence alignments
- Sequence comparison along the entire length of the two sequences being aligned
- Best for highly-similar sequences of similar length
- Local sequence alignments
- Sequence comparison intended to find the most similar regions in the two sequences being aligned ("paired subsequences")
- Regions outside the area of local alignment are excluded
- Best for sequences that share some similarity, or for sequences of different lengths

Dotplots

- Visual method for comparing two sequences
- Allows for quick identification of
- Regions of local alignment
- Direct or inverted repeat regions
- Insertions
- Deletions
- Low-complexity regions
- No statistical measure of the overall quality of the alignment

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Constructing a Dotplot

Tools for Constructing Dotplots

- Dotlet (Java applet)
http://www.isrec.isb-sib.ch/java/dotlet/Dotlet.html
- Dotter
http://www.cgr.ki.se/cgr/groups/sonhammer/Dotter.html
- Dottup (for complete genomes) http://www.emboss.org
- Dotplot subroutines also available through several software suites (GCG, DNA Strider)

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Identifying Repeats

>gi|189599|gb|AAA60019.1| mucin

MTPGTQSPFELLLLLTVLTVVTGSGHASSTPGGEKETSATQRSSVPSSTEKNAVSMTSSVLSSHSPGSGSSTTQGQDVTL APATEPASGSAATWGQDVTSVPVTRPALGSTTPPAHDVTSAPDNKPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTS APDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTS APDTRPAPGSTAPPAHGVISAPDTRPAPGSTAPPAHGVTSAPDTF PAPGSTAPPAHGVTSAPDTE PAPGSTAPPAHGVTS APDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTS APDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDนุRPAPGSTAPPAHGVTSAPDTRRPAPGSTAPPAHGVTS APDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTS APDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTSAPDTRPAPGSTAPPAHGVTS APDTRPAPGSTAPPAHGVISAPDTRPAPGSTAPPAHGVHSAPDTRPAPGSTAPPAHGVTSAPDTHRPAPGSTAPPAHGVTS APDTRPAPGSTAPPAHGVISAPDTRPAPGSTAPPAHGYISAPDTRPAPGSTAPPAHGVTSAPDHRPAPGSTAPPAHGVIS APDTRPAPGSTAPPAHGVISAPDTRPAPGSTAPPAHGVISAPDTRPAPGSTAPPAHGVTSAPDFRPAPGSTAPPAHGVIS
 ASGSASGSASTLVHNGTSARATTTPASKSTPEST઼SHHSDTPTTLASHSTKTDASSTHHSSVPPLTSSNHSTSPQLSTGV SFFFLSFHISNLQENSSLEDPSTDYYQELQRDISEMFLQIYKQGGELGLSNIKFRPGSVVVQITTLAFREGTINVHDVETQ FNQYKIFAASRYNLTISDVSVSDVPFPESAQSGAGVPGWGIALLVLVCVLVALAIVYLIALAぞCQCRRKNYGQLDIFPAR DTYHPMSEYPTYHTHGRYVPPSSTDRSPYణRiVSAGNGGSSLSYTNPAVAAASANL

PAPGSIAPPAHGVISAPDIR

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Identifying Low-Complexity Regions

- Regions of biased composition
- Homopolymeric runs
- Short-period repeats
- Subtle over-representation of several residues
- Biological origins and role not well-understood
- DNA replication errors (polymerase slippage)?
- Unequal crossing-over?
- May confound sequence analysis
- BLAST relies on uniformly-distributed amino acid frequencies
- Often lead to false positives
- Filtering is advised (and usually enabled by default)

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Identifying Low-Complexity Regions

Example: Drosophila achaete-scute
>gi|20455478|sp|P50553|ASC1_HUMAN Achaete-scute homolog 1 (HASH1) MESSAKMESGGAGQQPQPQPQQPFLPPAACFFA DGQPSGGGHKSAPKQVKRQRSSSPELMRCKRRLNFSGFGYSLPQQQF AVARRNERERNRVKLVNLGFAT LREHVPNGAANKKMSKVETLRSAVEYIRALQQLIDEHDAVSAAFQAG VLSPTISPNYSNDLNSMAGSPVS SYSSDEGSYDPLSPEEQELLDFTNWE

Homopolymeric

alanine-glutamine tract

Identifying Low-Complexity Regions

Scoring Matrices

- Empirical weighting scheme to represent biology (side chain chemistry, structure, and function)
- Cys/Pro important for structure and function
- Trp has bulky side chain
- Lys/Arg have positively-charged side chains

Scoring Matrices

- Conservation: What residues can substitute for another residue and not adversely affect the function of the protein?
- Ile/Val - both small and hydrophobic
- Ser/Thr - both polar
- Conserve charge, size, hydrophobicity, other physicochemical factors
- Frequency: How often does a particular residue occur amongst the entire constellation of proteins?

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Scoring Matrices

- Importance of understanding scoring matrices
- Appear in all analyses involving sequence comparison
- Implicitly represent a particular theory of evolution
- Choice of matrix can strongly influence outcomes

Matrix Structure: Nucleotides

	\mathbf{A}	\mathbf{T}	\mathbf{G}	\mathbf{C}	\mathbf{S}	\mathbf{W}	\mathbf{R}	\mathbf{Y}	\mathbf{K}	\mathbf{M}	\mathbf{B}	\mathbf{V}	\mathbf{H}	\mathbf{D}	\mathbf{N}
\mathbf{A}	$\mathbf{5}$	-4	-4	-4	-4	1	1	-4	-4	1	-4	-1	-1	-1	-2
\mathbf{T}	-4	$\mathbf{5}$	-4	-4	-4	1	-4	1	1	-4	-1	-4	-1	-1	-2
\mathbf{G}	-4	-4	$\mathbf{5}$	-4	1	-4	1	-4	1	-4	-1	-1	-4	-1	-2
\mathbf{C}	-4	-4	-4	$\mathbf{5}$	1	-4	-4	1	-4	1	-1	-1	-1	-4	-2
\mathbf{S}	-4	-4	1	1	-1	-4	-2	-2	-2	-2	-1	-1	-3	-3	-1
\mathbf{W}	1	1	-4	-4	-4	-1	-2	-2	-2	-2	-3	-3	-1	-1	-1
\mathbf{R}	1	-4	1	-4	-2	-2	-1	-4	-2	-2	-3	-1	-3	-1	-1
\mathbf{Y}	-4	1	-4	1	-2	-2	-4	-1	-2	-2	-1	-3	-1	-3	-1
\mathbf{K}	-4	1	1	-4	-2	-2	-2	-2	-1	-4	-1	-3	-3	-1	-1
\mathbf{M}	1	-4	-4	1	-2	-2	-2	-2	-4	-1	-3	-1	-1	-3	-1
\mathbf{B}	-4	-1	-1	-1	-1	-3	-3	-1	-1	-3	-1	-2	-2	-2	-1
\mathbf{V}	-1	-4	-1	-1	-1	-3	-1	-3	-3	-1	-2	-1	-2	-2	-1
\mathbf{H}	-1	-1	-4	-1	-3	-1	-3	-1	-3	-1	-2	-2	-1	-2	-1
\mathbf{D}	-1	-1	-1	-4	-3	-1	-1	-3	-1	-3	-2	-2	-2	-1	-1
\mathbf{N}	-2	-2	-2	-2	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

Matrix Structure: Proteins

BLOSUM62

PAM Matrices

- Margaret Dayhoff, 1978
- Point Accepted Mutation (PAM)
- Look at patterns of substitutions in highly related proteins ($>85 \%$ similar), based on multiple sequence alignments
- The new side chain must function the same way as the old one ("acceptance")
- On average, 1 PAM corresponds to 1 amino acid change per 100 residues
- 1 PAM ~ 1% divergence
- Extrapolate to predict patterns at longer evolutionary distances

PAM Matrices: Assumptions

- All sites are equally mutable
- Replacement is independent of surrounding residues
- Replacement is independent of previous mutations at the same position (Markov model)
- Sequences being compared are of average composition
- Forces responsible for sequence evolution over shorter time spans are the same as those for longer evolutionary time spans

PAM Matrices: Sources of Error

- Small, globular proteins used to derive matrices (departure from average composition)
- Errors in PAM 1 are magnified up to PAM 250
- Does not account for conserved blocks or motifs

BLOSUM Matrices

- Henikoff and Henikoff, 1992
- Blocks Substitution Matrix
- Look only for differences in conserved, ungapped regions of a protein family ("blocks")
- Directly calculated, using no extrapolations
- More sensitive to structural or functional substitutions
- Generally perform better than PAM matrices for local similarity searches (Henikoff and Henikoff, 1993)

BLOSUM n

- Calculated from sequences sharing no more than $n \%$ identity
- Contribution of sequences $>n \%$ identical clustered and weighted to 1

TGNQEEYGNTSSDSSDEDY	
TGNLEKEEEEGISOESSEEE	80%
KKLEKEEEEGISQESSEEE	
KKLEKEEEEGISQESSEEE	
KPAQEETEETSSOESAEED KKPAQETEETSSOESAEED	

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

BLOSUM n

- Clustering reduces contribution of closely-related sequences (less bias towards substitutions that occur in the most closely related members of a family)
- Substitution frequencies are more heavily-influenced by sequences that are more divergent than this cutoff
- Reducing n yields more distantly-related sequences

So many matrices...

Triple-PAM strategy (Alschul, 1991)

PAM 40	Short alignments, highly similar	$>70 \%$
PAM 120		$>50 \%$
PAM 250	Longer, weaker local alignments	$>30 \%$

BLOSUM (Henikoff, 1993)
BLOSUM $90 \quad$ Short alignments, highly similar $>60 \%$
BLOSUM $80 \quad>50 \%$
BLOSUM 62 Most effective in detecting known $>35 \%$ members of a protein family
BLOSUM 30 Longer, weaker local alignments

So many matrices...

- Matrix Equivalencies

$$
\begin{array}{lll}
\text { PAM } 250 & \sim & \text { BLOSUM } 45 \\
\text { PAM } 160 & \sim & \text { BLOSUM } 62 \\
\text { PAM } 120 & \sim & \text { BLOSUM } 80
\end{array}
$$

- Specialized matrices
- Transmembrane proteins
- Species-specific matrices

Wheeler, 2003

Gaps

- Compensate for insertions and deletions
- Used to improve alignments between two sequences
- Must be kept to a reasonable number, to not reflect a biological implausible scenario (~ 1 gap per 20 residues good rule-of-thumb)
- Cannot be scored simply as a "match" or a "mismatch"

Affine Gap Penalty

Fixed deduction for introducing a gap plus
an additional deduction proportional to the length of the gap

$$
\text { Deduction for a gap }=G+L n
$$

where $\quad G=$ gap-opening penalty $L=$ gap-extension penalty $\quad 2 \quad 1$
and $n=$ length of the gap

Can adjust scores to make gap insertion more or less permissive, but most programs will use values of G and L most appropriate for the scoring matrix selected

BLAST

- Basic Local Alignment Search Tool
- Seeks high-scoring segment pairs (HSP)
- pair of sequences that can be aligned without gaps
- when aligned, have maximal aggregate score (score cannot be improved by extension or trimming)
- score must be above score threshhold S
- gapped or ungapped
- Results not limited to the "best HSP" for any given sequence pair

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Neighborhood Words

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Extension

Scores and Probabilities

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Scores and Probabilities

\longrightarrow -			
Query :	325	SLAALLNKCKTPQGQRLVNQWIKQPLMDKNRIEERLNLVEA	365
		+LA++L TP+G R++ +W+ +P+ D + ER + A	
Sbjet :	290	TLASVLDCTVTPMGSRMLKRWLHMPVRDTRVLLERQQTIGA	330

Scores and Probabilities

$\longrightarrow \longrightarrow$				
Query :	325	SLAALLNKCKTPQGQ	QRLVNQWIKQPLMDKNRIEERLNLVEA	365
		+LA++L TP+G	R++ +W+ +P+ D + ER + A	
Sbjct:	290	TLASVLDCTVTPMG	SRMLKRWLHMPVRDTRVLLERQQTIGA	330

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Database Searching Artifacts

- Low-complexity regions
- Nucleotide searches: removed with DUST (\rightarrow X)
- Protein searches: removed with SEG $(\rightarrow \mathrm{N})$
- Repetitive elements
- LINE, SINE, Alu
- Automatic masking "still under development"
- RepeatMasker
http://repeatmasker.genome.washington.edu

Database Searching Artifacts

- "Hypothetical protein" hits
- Some entries result from gene prediction or translation of transcripts
- An ORF does not imply translation into a real protein
- Low-quality sequence hits
- ESTs
- Single-pass sequence reads from large-scale sequencing (possibly with vector contaminants)

BLAST2SEQUENCES

- Finds local alignments between two protein or nucleotide sequences of interest
- All BLAST programs available
- Select BLOSUM and PAM matrices available for protein comparisons
- Same affine gap costs (adjustable)
- Input sequences can be masked
- Implementations
- NCBI Web interface
- bl2seq downloadable executable ftp://ncbi.nlm.nih.gov/blast/executables/

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

MegaBLAST

- Optimized for aligning long and/or highlysimilar sequences ("greedy algorithm")
- Good for batch nucleotide searches
- Search targets
- Entire eukaryotic genomes
- Trace Archives (125 million sequence traces)
- Run speeds approximately 10 times faster than BLASTN
- Adjusted word size
- Different gap scoring scheme

BLASTN vs. MegaBLAST

- Word size
- BLASTN default = 11
- MegaBLAST default $=28$
- Non-affine gap penalties

Deduction for a gap $=r / 2-q$
where
$r=$ match reward
(default 1)
$q=$ mismatch penalty
(default -2)
and no penalty for opening the gap

Discontiguous MegaBLAST

- Designed specifically for the comparison of diverged sequences, particularly from different organisms
- Since these types of comparison may yield low degrees of identity, this variant performs better than the original MegaBLAST, which is optimized for sequences that are highly similar

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

>ref \mid NW_044164.1|Rn9 1524 Rattus norvegicus chromosome 9 WGS supercontig
Length $=2 \overline{9} 12845$

Score $=4711$ bits (2450), Expect $=0.0$ Identities $=2450 / 2450$ (100\%)
Strand = Plus / Plus

```
>ref|NW_044163.1|Rn9_1523 Rattus norvegicus chromosome 9 WGS supercontig
    Length = 6多44367
    Score = 4711 bits (2450), Expect = 0.0
    Identities = 2450/2450 (100%)
Strand = Plus / Plus
```

>ref|NW_043915.1|Rn5_1274 Rattus norvegicus chromosome 5 WGS supercontig
Length $=1 \overline{7} 4842$
Score $=4572$ bits (2378), Expect $=0.0$
Identities $=2381 / 2382$ (99\%), Gaps $=1 / 2382$ (0%)
Strand $=$ Plus $/$ Minus

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

Current Topics in Genome Analysis 2003
Biological Sequence Analysis I

FASTA

- SSEARCH

Smith-Waterman algorithm
Rigorous and quite sensitive, but slow

- FASTA

Regions of local alignment
Approximation of Smith-Waterman algorithm Faster, but sacrifices sensitivity

- Bill Pearson, University of Virginia http://fasta.bioch.virginia.edu

