Current Topics in Genome Analysis Fall 2003

Week 4 Biological Sequence Analysis I

Andy Baxevanis, Ph.D.

Overview

- Week 4: Comparative methods and concepts
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Dotplots
 - Scoring Matrices
 - BLAST
- Week 5: Predictive methods and concepts
 - Profiles, patterns, motifs, and domains
 - Secondary structure prediction
 - Structures: VAST, Cn3D, and de novo prediction

- Provide a measure of relatedness between nucleotide or amino acid sequences
- Determining relatedness allows one to draw biological inferences regarding
 - structural relationships
 - functional relationships
 - evolutionary relationships

Defining the Terms

- The quantitative measure: *Similarity*
 - Always based on an observable
 - Usually expressed as percent identity
 - Quantify changes that occur as two sequences diverge
 - substitutions
 - insertions
 - deletions
 - Identify residues crucial for maintaining a protein's structure or function
- High degrees of sequence similarity might infer

• a common evolutionary history

• possible commonality in biological function

Defining the Terms

- The conclusion: *Homology*
 - Genes *are* or *are not* homologous (not measured in degrees)
 - Homology implies an evolutionary relationship
- The term "homolog" may apply to the relationship
 - between genes separated by the event of speciation (orthology)
 - between genes separated by the event of genetic duplication (paralogy)

Defining the Terms

- Orthologs
 - Sequences are direct descendants of a sequence in a common ancestor
 - Most likely have similar domain structure, threedimensional structure, and biological function
- Paralogs
 - Related through a gene duplication event
 - Provides insight into "evolutionary innovation" (adapting a pre-existing gene product for a new function)

Overview

- Week 4: Comparative methods and concepts
 - Similarity vs. Homology
 - Global vs. Local Alignments
 - Dotplots
 - Scoring Matrices
 - BLAST
- Week 5: Predictive methods and concepts
 - Profiles, patterns, motifs, and domains
 - Secondary structure prediction
 - Structures: VAST, Cn3D, and *de novo* prediction

Dotplots

- Visual method for comparing two sequences
- Allows for quick identification of
 - Regions of local alignment
 - Direct or inverted repeat regions
 - Insertions
 - Deletions
 - Low-complexity regions
- No statistical measure of the overall quality of the alignment

<section-header> Udentifying Low-Complexity Regions 9. Regions of biased composition 9. Homopolymeric runs 9. Short-period repeats 9. Subtle over-representation of several residues 9. Biological origins and role not well-understood 9. DNA replication errors (polymerase slippage)? 9. Unequal crossing-over? 9. May confound sequence analysis 9. BLAST relies on uniformly-distributed amino acid frequencies 9. Often lead to false positives 9. Filtering is advised (and usually enabled by default)

Scoring Matrices

- Empirical weighting scheme to represent biology (side chain chemistry, structure, and function)
 - Cys/Pro important for structure and function
 - Trp has bulky side chain
 - Lys/Arg have positively-charged side chains

<section-header> Scoring Matrices Onservation: What residues can substitute for another residue and not adversely affect the function of the protein? Ile/Val - both small and hydrophobic. Ser/Thr - both polar Conserve charge, size, hydrophobicity, other physicochemical factors Frequency: How often does a particular residue sccur amongst the entire constellation of proteins?

Scoring Matrices

- Importance of understanding scoring matrices
 - Appear in all analyses involving sequence comparison
 - Implicitly represent a particular theory of evolution
 - Choice of matrix can strongly influence outcomes

p -1 -1 -1 -4 -3 -1 -1 -3 -1 -3 -2 -2 -2 -1 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		R Y K M I 1 -4 -4 1 -4 -4 1 1 -4 -4 1 -4 1 -4 -4 -4 1 -4 -4 -4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -4 -2 -2 -2 -1 -4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -4 -1 -2 -2 -2 -2 -4 -1 -3 -2 -3 -1 -1 -3 -1 -4 -3 -1 -3 -1 -3 -1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
--	--	--	--	--

PAM Matrices

- Margaret Dayhoff, 1978
- Point Accepted Mutation (PAM)
 - Look at patterns of substitutions in highly related proteins (> 85% similar), based on multiple sequence alignments
 - The new side chain must function the same way as the old one ("acceptance")
 - On average, 1 PAM corresponds to 1 amino acid change per 100 residues
 - 1 PAM ~ 1% divergence
 - Extrapolate to predict patterns at longer evolutionary distances

PAM Matrices: Assumptions

- All sites are equally mutable
- Replacement is independent of surrounding residues
- Replacement is independent of previous mutations at the same position (Markov model)
- Sequences being compared are of average composition
- Forces responsible for sequence evolution over shorter time spans are the same as those for longer evolutionary time spans

PAM Matrices: Sources of Error

- Small, globular proteins used to derive matrices (departure from average composition)
- Errors in PAM 1 are magnified up to PAM 250
- Does not account for conserved blocks or motifs

BLOSUM Matrices

- Henikoff and Henikoff, 1992
- <u>Blocks Substitution Matrix</u>
 - Look only for differences in conserved, ungapped regions of a protein family ("blocks")
 - Directly calculated, using no extrapolations
 - More sensitive to structural or functional substitutions
 - Generally perform better than PAM matrices for local similarity searches (*Henikoff and Henikoff, 1993*)

BLOSUM *n* • Calculated from sequences sharing no more than n%identity • Contribution of sequences > n% identical clustered and weighted to 1 TGNQEEYGNTSSDSSDEDY TGNQEEYGNTSSDSSDEDY KKLEKEEEEGISQESSEEE KKLEKEEEEGISQESSEEE 80% KKLEKEEEEGISQESSEEE KKLEKEEEEGISOESSEEE KKLEKEEEEGISQESSEEE KKLEKEEEEGISQESSEEE KPAQEETEETS SQESAEED KKPAQETEETS SQE SAEED KPAQEETEETSSQESAEED KKPAQETEETSSQESAEED A+T Hook Domain (Block IPB000637B)

BLOSUM *n*

- Clustering reduces contribution of closely-related sequences (less bias towards substitutions that occur in the most closely related members of a family)
- Substitution frequencies are more heavily-influenced by sequences that are more divergent than this cutoff
- Reducing *n* yields more distantly-related sequences

Triple-PAM	strategy (Altschul, 1991)	
PAM 40	Short alignments, highly similar	> 70%
PAM 120		> 50%
PAM 250	Longer, weaker local alignments	> 30%
BLOSUM (H	lenikoff, 1993)	
BLOSUM 90	Short alignments, highly similar	> 60%
BLOSUM 80		> 50%
BLOSUM 62	Most effective in detecting known members of a protein family	> 35%
BLOSUM 30	Longer, weaker local alignments	

So many matrices					
• Matrix Equivalencies					
PAM 250 ~	~	BLOSUM 45			
PAM 160 ~	~	BLOSUM 62			
PAM 120 ~	~	BLOSUM 80			
 Specialized matrices Transmembrane prote Species-specific matr Wheeler, 2003					

Gaps

- Compensate for insertions and deletions
- Used to improve alignments between two sequences
- Must be kept to a reasonable number, to not reflect a biological implausible scenario (~1 gap per 20 residues good rule-of-thumb)
- Cannot be scored simply as a "match" or a "mismatch"

Affine Gap Penalty

Fixed deduction for introducing a gap *plus* an additional deduction proportional to the length of the gap

Deduction for a gap = G + Ln

		nuc	pro
where	G = gap-opening penalty	5	11
	L = gap-extension penalty	2	1
and	n = length of the gap		

dill

Can adjust scores to make gap insertion more or less permissive, but most programs will use values of G and L most appropriate for the scoring matrix selected

BLAST

- <u>Basic Local Alignment Search Tool</u>
- Seeks high-scoring segment pairs (HSP)
 - pair of sequences that can be aligned without gaps
 - when aligned, have maximal aggregate score (score cannot be improved by extension or trimming)
 - score must be above score threshold *S*
 - gapped or ungapped
- Results not limited to the "best HSP" for any given sequence pair

Program	Query Sequence	Target Sequence
BLASTN	Nucleotide	Nucleotide
BLASTP	Protein	Protein
BLASTX	Nucleotide, six-frame translation	Protein
TBLASTN	Protein	Nucleotide, six-frame translation
TBLASTX	Nucleotide, six-frame translation	Nucleotide, six-frame translation

000		NCBI	Blast – Netscape		
	Ehttp://ww	w.ncbi.nlm.nih.gov/blast/Bli	ast.cgi?CMD=Web&LAYOUT="	TwoWindows&AUTO_FOR	چ, 🔊
🕘 🕞 NCBI Blast					×
S NCBI		protein-pro			
Nucleotide	Protein	Translations	Retrieve results for an RID		
Search	FGGSSAKMLNELFGRÇ PANSTPMSNGTNASIS ASSGEQHQSQLQHDLV	LFQPQSVSTANSSS MKQAQDATSGLPQSI SPGSAHSSSHSHQGVS	Drospero NNNNSSTPALATHSI JONAMLAAMETATSAI DRGSRRVSACSDRSLJ MQLDQELRTAMQQQQ(ELLIGSLNSTSKLLC EAAAADVAGGSPPRA	
Choose database	nr 💽 🗲		nr	Non-redundant	
Do CD-Search	v		swissprot	SWISS-PROT	
Now:	BLAST! or Reset quer	y Reset all	pat	Patent	
			pdb	Protein Data Bank	
			month	nr/last 30 days	
Options	for advanced blasting				-
Limit by entrez query		or select from: (none)		•	
Composition-based statistics	v				4
S 🖂 🙏 🖭 🗠 [⊐∎≓ ¶3 ਿਿ∕/

000	NCBI Blast – Netscape	Θ
	ttp://www.ncbi.nlm.nih.gov/blast/Blast.cgi?CMD=Web&LAYOUT=TwoWindows&AUTO_F	OR Search
🕙 옹 NCBI Blast		
Options	for advanced blasting	
Limit by entrez query	or select from: (none)	
Composition-based statistics	<u> </u>	
Choose filter	✓ Low complexity ☐ Mask for lookup table only ☐ Mask lower case	-
Expect	10	
Word Size	3 -	
Matrix	BLOSUM62 Gap Costs Existence: 11 Extension: 1 PAM30 PAM70	=
PSSM	ELOSUM62 BLOSUM62 BLOSUM45	_
Other advanced		
PHI pattern		
Format		
🗕 🖂 🙏 🖭 oz (

00	NCBI Blast – Netscape	
6.00	Shttp://www.ncbi.nlm.nih.gov/blast/Blast.cgiPCMD=Web&LAYOUT=TwoWindows&AUTO_FOR Search	S. 🔊
🕙 😒 NCBI Blast		×
Options Limit by entrez query Composition-based	for advanced blasting or select from. (none)	
statistics	$\frac{1}{10000000000000000000000000000000000$	
Matrix	BLOSUM62 Gap Costs Existence: 11 Extension: 1	-
PSSM	Existence: 1 Extension: 2 Existence: 8 Extension: 2 Existence: 8 Extension: 2 Existence: 12 Extension: 1 Existence: 11 Extension: 1 Existence: 10 Extension: 1 Existence: 10 Extension: 1	
Other advanced		
PHI pattern		
Format		
🕒 🖂 🙏 🖭 oz [I⊨ ¶∃ 🖆 //

000	NCBI Blast – Netscape			0
	ttp://www.ncbi.nlm.nih.gov/blast/Blast.cgi7CMD=Web&LAYOUT=TwoWindows&AUTO_FOR	Search	3.	
🕙 😒 NCBI Blast				\mathbf{X}
Other advanced				
PHI pattern				
Format				
Show	Graphical Overview V Linkout V Sequence Retrieval V NCBI-gi Alignment in HTML for	mat		
	Descriptions 100 Alignments 50 Organism [ORGN]			
Alignment view	Pairwise 💌			
Format for PSI-BLAST	with inclusion threshold: 0.005			
Limit results by entrez query	or select from: (none)			
Expect value range:				
Layout:	Two Windows 🗾 Formatting options on page with results: None			
Autoformat	Semi-auto 💌	_		=
Thunk 7				
BLAST!	sot alf			
GenandL with	preset values ? GREURE			4
🔊 🖂 🙏 🖭 oz			-11:- 🤨	

00		NCBI Bla	st – Netscape		
) (S http://w	ww.ncbi.nlm.nih.gov/blast/Blast.c	gi	Search	۷. 🔊
🕘 😒 NCBI Blast	l				×
S NCBI		formatting	and an an an an and an		
Nucleotide	Protein	Translations	Retrieve results for an RID		
		ed and put into the Blast Que in prospero (1403 letters)	eue.		
Hit the button to	See conserved do	omains from CDD			
					=
Thing we re estimat	ed to be ready in 15 seconds	but may be done sooner.			
Please press "FORMA' You may also request	Γ!" when you wish to check results of a different search b	your results. You may change the y entering any other valid reques	formatting options for your result ID to see other recent jobs.	via the form below and press "FORMAT	!" again.
Format					
Show	Graphical Overview	Linkout 🔽 Sequence Retrieval 🔽	NCBI-gi Alignment 💌 in H	TML format	
Number of:	Descriptions 100 I Alig	nments 50 💌			
Alignment view	Pairwise	_			4
🔊 🖂 🙏 🖭 🗷					

⊖ ⊖ ⊖ RID=1063758631-3905-654746.BLASTQ3, sp P296	17 PROS_DROME Proteir	prospero	- Netscape	C
Shttp://www.ncbi.nlm.nih.gov/blast/Blast.cgi				Search 💐 🔊
② SRID=1063758631-3905-65474				
Related Structures	Descending	Score	Е	LocusLink
Sequences producing significant alignments:	score	(bits)		UniGene
gi 6179901 gb AAF05703.1 AF190403_1 homeodomain	order	880	0.0	Structure
gi 24645914 ref NP_524317.2 prospero CG17228-PC	[Drosophil	874		GEO
gi 158184 gb AAA28841.1 Pros protein gi 217346 dbj BAA01464.1 prospero [Drosophila m	alanagagatanl	873 873		
gi 28571646 ref NP 788636.1 prospero CG17228-PD		851	0.0	L
gi 28571644 ref NP 731565.2 prospero CG17228-PA	[Drosophil	847		L
gi 14285684 sp 09U6A1 PRO DROVI Protein prospero gi 31201317 ref XP 309606.1 ENSANGP00000010936		469 331	e-130 7e-89	
gi 27065659 pdb 1MIJ A Chain A, Crystal Structur		319		S
gi 32261038 emb CAE00181.1 prospero protein [Cu	piennius sa	267	1e-69	_
gi 16768018 gb AAL28228.1 GH11848p [Drosophila		251	6e-65	L
gi 17552742 ref NP_498760.1 C.Elegans Homeobox gi 546374 gb AAB30541.1 Prox 1=homeobox gene pr		237 223	1e-60 2e-56	
gi 3024449 sp 092786 PRX1 HUMAN Homeobox prosper	•	202	5e-50	L
gi 3024448 sp 091018 PRX1_CHICK Homeobox prosper	o-like prot	199	2e-49	
gi 7512233 pir JC5495 Prox 1 protein - chicken gi 21359846 ref NP 002754.2 prospero-related ho	machar 1 (H	199 199	3e-49 3e-49	
gi 6679483 ref NP 032963.1 prospero-related hom		199	4e-49	_
gi 27667452 ref XP 234418.1 similar to prospero		199	4e-49	
ği 11071924 dbj BAB17310.1 Prox 1 [Xenopus laev	is]	198	7e-49	_
gi 13936345 gb AAK40357.1 prospero-related home	-	197	1e-48	
gi 18859263 ref NP_571480.1 prospero-related ho gi 28521642 ref XP_127011.2 RIKEN_cDNA_1700058C		197 193	1e-48 2e-47	L
gi 3372869 gb AAC28353.1 Prox1 [Xenopus laevis]	or [mus mus	193	2e-47 2e-46	
gi 27680210 ref XP_223067.1 similar to prospero	-related ho	187	2e-45	L

00	RID=1063758631-3905-654746.BLASTQ3, sp/P29617/PROS_DROME Protein prosp	aro – Netscape	
	C	ero – Netscape	
	Image: Shttp://www.ncbi.nlm.nih.gov/blast/Blast.cgi	🔽 🔍 Sear	:h 🔏 🔊
🕘 🕞 RID=1063	758631-3905-65474		×
	ref XP_223067.1 similar to prospero-related ho 187 gb AAC59781.1 prospero like protein 159		^
	dbj BAC04278.1 unnamed protein product [Homo s 146		A
	dbj BAB17311.1 Prox 1 [Cynops pyrrhogaster] 143		Accept
	gb AAD30180.1 AC006530_2 homeobox prospero-like 87 pir JC5496 Prox 1 protein 671 - chicken 70		(for now)
gi 15923965	gb AAF13029.1 AF070733_1 transcription factor Pr 41 ref NP_371499.1 ClpB chaperone homologue [Stap 35 state State State 35	8.6	Reject
	refNP-645674.1ClpB chaperone homologue~ORFID35refNP-764229.1clpB protein [Staphylococcus e35		
	Alignments		
	ALL SIMOLOS		
Get selected se	quences Select all Deselect all		
	01 gb AAF05703.1 AF190403_1 L homeodomain transcription = = 1403	factor Prosp	ero [Drosophi
	80 bits (2273), Expect = 0.0 = 493/627 (78%), Positives = 493/627 (78%)		
Query: 777	HVATAAPRPQMHHPAPARLPTRMGGAAGHTALKSELSEKFQMLRANNNSSMMRMSGT HVATAAPRPOMHHPAPARLPTRMGGAAGHTALKSELSEKFOMLRANNNSSMMRMSGT		
Sbjct: 777	HVATAAPRPQMHHPAPARLPTRMGGAAGHTALKSELSEKFQMLRANNNSSMMRMSGT		
Query: 837	GLADVLKSEITTSLSALVDTIVTRFVHQRRLFSKQADSVTAAAEQLNKDLLLASQIL GLADVLKSEITTSLSALVDTIVTRFVHORRLFSKOADSVTAAAEQLNKDLLLASOIL		
Sbjct: 837	GLADVLKSEITTSLSALVDTIVTRFVHQRRLFSKQADSVTAAAEQLNKDLLLASQIL		
Query: 897	SPRTKVADRPQNGPTPATQSAAAMFQAPKTPQGMNPVAAAALYNSMTGPFCLPPDXX SPRTKVADRPONGPTPATOSAAAMFOAPKTPOGMNPVAAAALYNSMTGPFCLPPD	XXX 956	
🔊 🖂 👌 🖓 👁			

Suggested B	LAST Cutoffs	
	<i>E</i> value	Sequence Identity
Nucleotide	<u>≤</u> 10 ⁻⁶	≥ 70%
Protein	≤ 10 ⁻³	≥25%
PICK THE RIGHT MATRIX AND ALWAYS LOOK AT THE ALIGNMENTS!!!		

- Low-complexity regions
 - Nucleotide searches: removed with DUST $(\rightarrow X)$
 - Protein searches: removed with SEG $(\rightarrow N)$
- Repetitive elements
 - LINE, SINE, Alu
 - Automatic masking "still under development"
 - RepeatMasker http://repeatmasker.genome.washington.edu

Database Searching Artifacts

- "Hypothetical protein" hits
 - Some entries result from gene prediction or translation of transcripts
 - An ORF does not imply translation into a real protein
- Low-quality sequence hits
 - ESTs
 - Single-pass sequence reads from large-scale sequencing (possibly with vector contaminants)

BLAST2SEQUENCES

- Finds local alignments between two protein or nucleotide sequences of interest
 - All BLAST programs available
 - Select BLOSUM and PAM matrices available for protein comparisons
 - Same affine gap costs (adjustable)
 - Input sequences can be masked
- Implementations
 - NCBI Web interface
 - bl2seq downloadable executable *ftp://ncbi.nlm.nih.gov/blast/executables/*

000	Blast 2 Sequences – Netscape			\odot
G. O. G. S	S http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html	Search	3.	
🕘 😒 Blast 2 Sequences				\mathbf{X}
Program blastp Matrix B	LOSUM62 🗾			
Parameters used in BLASTN p Reward for a match:	rogram only: Penalty for a mismatch:			
Use Mega BLAST Strand	option Not Applicable 💌			
Open gap 11 and extension gap x_dropoff 50 expect 1	a gap 1 penalties 0.0 word size 3 Filter 🔽 Align			
Sequence 1 Enter accession or or sequence in FASTA format				
MSRLEAKKPSLCKSEPLTT HPILKILTASIQNHVSSFS PVDFSSTQILLCLVRSILT DSTVLPGILIEMSEVQLMR	≥ chaperonin MKKS [Homo sapiens] RVRTLSVLKRIVTSCYGPSGRLKQLHNGFGGYVCTTSQSS CGLFTAILCCNLIENVQRLGITPTV IRLNKHLLSLCISYI SKPACMLTRKETEHVSALILRAFLLTIPENAEGHIILGKSLI LLPIKKSTALKVALFCTLSGDTSDTGEGTVVVSYGVSLENA SLKQFLNNHRIIAIDRIGVTLMEPLTKMTGTQPIGSLGSICF▼			
Sequence 2 Enter accession or or sequence in FASTA format				
>AAF73965.1 MKKS pr MSRLEAKKPSLCKTEPLTS HPVLKILTSSVQNHVSCFS PVDFRSTHTFLSLVHSILT DSTVLPGLLIEASEVQLRR	Dtein [Mus musculus] XXVRSTLSVLKGVIASCYGPSGRLKQLHNGLGGCVYTTSQSS CGEFTAILCCNLENLØRLDLTPATAIKLNKYLLSLCTSYI XRPACMLTRKETDHIGALILKAFLLTIPESTEERMVLGKSII LLPTQKASGLRVALFCTSLSGDFSNAGEGVVVAHYQVSLENA LROFFSERHVMAIDRVGVTLMESLSKVTGATPIGSLNPIVS			
Align Clear Input				
				-
🔊 🖂 🙏 🖭 oz 🔲			-I- Q	i 🗗 /

😑 🕤 😁 Blast Result – Netscape	
S http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi70	🖸 🔍 Search 🖉 🔊
2 S Blast Result	
Blast 2 Sequences results PubMed Entrez BLAST OMIM Taxonomy Structure	
BLAST 2 SEQUENCES RESULTS VERSION BLASTP 2.2.6 [Apr-09-2003]	=
Matrix BLOSUM62 gap open: 11 x_dropoff: 50 expect: 10.00(wordsize: 3 Filter ✓ Align	
Sequence 1 lclltmpseq_0 chaperonin MKKS [Homo sapiens] Length 570 (1 570) Sequence 2 lclltmpseq_1 protein [Mus musculus] Length 570 (1 570) NOTE: The statistics (bitscore and expect value) is calculated based on the size of nr database Score = 907 bits (2344), Expect = 0.0 Identities = 439/570 (77%), Positives = 500/570 (87%)	

- Optimized for aligning long and/or highlysimilar sequences ("greedy algorithm")
- Good for batch nucleotide searches
- Search targets
 - Entire eukaryotic genomes
 - Trace Archives (125 million sequence traces)
- Run speeds approximately 10 times faster than BLASTN
 - Adjusted word size

• Different gap scoring scheme

Discontiguous MegaBLAST

- Designed specifically for the comparison of diverged sequences, particularly from different organisms
- Since these types of comparison may yield low degrees of identity, this variant performs better than the original MegaBLAST, which is optimized for sequences that are highly similar

00	Blast The Rat Genome – Netscape			0
_ G, O, G &	Shttp://www.ncbi.nlm.nih.gov/genome/seq/RnBlast.html	Search	3.	
🕘 😒 Blast The Rat Genom	e			\mathbf{X}
Search LocusLink				
Overview FAQs news manual references Bast your sequ Bast your sequ Begin Search Enter an acces >BAC clon AGTTCCTT ATCAAACTC CCATTTCT GGGTTTTAA Optional par Expect	ALAST			_
🕲 🖂 🛔 🕑 🖅 🚺 Done			-11- 🔨 i	ſ.

● ● ● ● RID=1063913339-20157-1971695.BLASTQ3, BAC clone - N	etscape 🖂		
Shttp://www.ncbi.nlm.nih.gov/blast/Blast.cgi	🖸 🔍 Search 🖉 🔊		
2 S RID=1063913339-20157-1971			
Genome View Show positions of the BLAST hits in the Mouse genome using the Entrez Genomes MapViewer			
Query= BAC clone (2450 letters)			
Distribution of 3 Blast Hits on the Query Sequence			
Mouse-over to show defline and scores. Click to show alignments			
Color Key for Alignment Scores			
<40 40-50 50-80 80-200 1_20157 -	>=200		
Sequences producing significant alignments:	Score E (bits) Value		
ref NW_044163.1 Rn9_1524 Rattus norvegicus chromosome 9 WGS ref NW_044163.1 Rn9_1523 Rattus norvegicus chromosome 9 WGS ref NW_043915.1 Rn5_1274 Rattus norvegicus chromosome 5 WGS	4711 0.0 4711 0.0 4572 0.0		
S → A 92 [*] cZ Done	- I • • • •		

FASTA

- SSEARCH Smith-Waterman algorithm Rigorous and quite sensitive, but slow
- FASTA Regions of local alignment Approximation of Smith-Waterman algorithm Faster, but sacrifices sensitivity
- Bill Pearson, University of Virginia http://fasta.bioch.virginia.edu

