## Evaluating potential bias in and interpreting results from epidemiologic designs for genome-wide association studies

Ellen M. Wijsman, Ph.D. Dept. Biostatistics and Div. Medical Genetics University of Washington

## **Genetic association studies**

- Associations depend on gene histories: markers and traits
- Gene histories introduce data structure
- Good design requires an understanding of the potential causes of data structure
- Design, analysis and interpretation must accommodate data structure

## Causes of genetic data structure

- Chromosome history

   Linkage disequilibrium
- Non-random mating and population history

   Population structure
- Finite population size
  - Cryptic relatedness
- Sampling through cases
  - Cryptic relatedness

### Chromosome history produces linkage disequilibrium (LD)



# We sample people, not alleles



Ability to detect association depends on:

### •Trait mode of inheritance

➤Genotype penetrances

Locus/allelic heterogeneity

•Distance between marker and trait locus

•Age of mutation

(Chapman & Wijsman 1998 AJHG 63:1872-1885)

# **Choice of population**

- Large and outbred (e.g., US, Britain)
  - High heterogeneity (genetic and environmental)
  - ➤Weaker association
  - Large available sample sizes
    - Many choices for subgrouping
- More isolated populations (e.g, Finland)
  - Less heterogeneity
    - Fewer disease alleles
    - Less environmental variation
  - Stronger association
  - Smaller available sample sizes

# Examples

- Great Britain, Welcome Trust (WTCCC)
  - Caucasian: Total population ~60 million
  - 2000 of each of 7 case populations
  - 3000 common controls
  - SNP genome scan
- Guam CC (Univ. of WA, UCSD, Guam)
  - Chamarro: Total population ~45,000
  - 140 cases with neurodegenerative disease
  - 88 elderly unaffected controls
  - STRP genome scan

### Ancestry is not always accurate



### PC1 clustering of IBS

(WTCCC 2007, Nature 447:661-678)

## LD decays under random mating



- True random mating rarely occurs
  - Geographical location associated with genotype
  - 1800's: Spouses' birthplaces avg. 6-10 km apart in Europe, US
- Elimination of LD takes longer
- Some geographic substructure is typical

### **Population structure is unavoidable**



First ancestry informative principal component

(WTCCC 2007, Nature 447:661-678)

# Extensive analysis required to minimize spurious association

GWAS trend test results, Type 2 diabetes



# Human history

- Population structure
  - Frequent waves of migration/conquest
  - Low spousal birth distances: nonrandom mating
- World population increase is recent
  - ➤ 1 AD: ~300 million
  - ➤ 1650: ~500 million
  - ➤ 1850: ~1.2 billion
  - ➤ 2000: ~6 billion
- Many or most human risk alleles are recent
   >5% of humans ever born are alive today
   Surviving risk alleles had even faster growth rate
  - Surviving risk alleles had even faster growth rate (Thompson & Neel 1997 AJHG 60:197-204)
  - Many risk alleles have a "short" genealogical tree

# **Genealogy of chromosomes**



Short "tree" among cases: cases tend to be related
Shorter trees among rapidly expanding populations (Voight and Pritchard 2005 PLOS Genet 1:e32)

# **Cryptic relatedness**

- Cases and controls drawn from one population
- Sampling through (rarer) cases selects a short branch of the gene (coalescent) tree
- The short tree leads to cases being more related than controls
- In finite populations, controls may also be related (also short tree!)
- Consequence: correlated data, giving inflated variance over that assumed
  - leads to incorrect p-values in statistical tests

(Voight & Pritchard 2005 PLOS Genet 1:e32)

## **Finite samples include relatives**



No dichotomy in relationship inferences

### **Cases show excess relatedness**

### Hutterites known relationships

#### Guam CC estimated relatedness



(Voight & Pritchard, 2005 PLOS Genet 1:e32)

### **Relatedness affects tests**



# **Comments and Summary**

- Stringent test significance levels required
  - Accuracy of tail of distribution of test statistic is important
  - If inaccurate, how to interpret results?
- Violation of assumptions leads to erroneous distributions of test statistics
  - Leads to incorrect inference/interpretation
- Data structure is unavoidable: violates assumptions
  - Population substructure
  - Cryptic relatedness
- Careful evaluation of effects of possible violation of assumptions/distributions is important
  - Internal consistency of data/results can be evaluated
- Analyses that incorporate the data structure are critical
  - No amount of careful design will completely eliminate the structure