

Paul de Bakker Assistant Professor of Medicine Brigham and Women's Hospital and Harvard Medical School

Combining multiple GWAS

- Rationale: more power
- Challenge is to achieve comparability between individuals studies
 - Need standardized distributions of test statistic
- Distortions can be due to:
 - Population stratification (sample ascertainment)
 - Technical artefacts (e.g. genotyping error, batch effects)
 - Statistical artefacts (e.g. overdispersion of test statistic, imputation)

Q-Q plot of the test statistic: expected vs. observed

Q-Q plot of the test statistic: expected vs. observed

Q-Q plot of the test statistic: expected vs. observed

population stratification

Principal components analysis (PCA) to test for differences between cases and controls

Helsinki

Skara and Malmö

Botnia

Jakobstad and Malax/Närpes

Vasa/Korsholm

Got stratification?

- Analytical methods to optimize matching between cases and controls
 - EIGENSTRAT (PCA)
 - PLINK (clustering based on identity-by-state)
- For meta-analysis: distributions must be corrected for (e.g. $\lambda_{\text{GC}})$
- But can't save data if cases and controls are severely differentiated
 - Other control data available? (data sharing)

statistical artifacts due to imputation

Coverage of common SNPs by genome-wide genotyping platforms

Barrett and Cardon; Pe'er, de Bakker et al., Nat Genet, 2006

86%

Increasing coverage and power by genome-wide imputation

- Genotyping platforms have partially overlapping SNP sets
 - Roughly 50K SNPs between Affy 500K and Illumina 317K
- Imputation (prediction) of "missing" SNPs
 - Majority of SNPs are highly correlated to genotyped SNPs
 - Minority of SNPs are difficult to impute \rightarrow uncertainty
- Questions:
 - How does this affect the test statistic?
 - What can we do about it?
 - Example: Diabetes Genetics Initiative (DGI) and MACH imputations

1,022 diabetics and 1,075 euglycemic controls matched by age, sex, BMI, location

after QC: 370,847 SNPs

Q-Q plot: genotyped vs. imputed SNPs

Parsing all imputed SNPs by their correlation (r²) to the genotyped SNPs

Serious deflation observed for imputed SNPs that are in poor (pairwise) LD to genotyped SNPs

binomial variance

Lack of information (uncertainty) leads to decreased variance of dosage

replace with empirically observed variance

This correction re-inflates the distribution

Correlation in test statistic for rare and common SNPs: genotyped vs. imputed data

Same effect observed in ultra-clean set of rare SNPs

(missingness <0.1% and HWE p-val>0.1)

r²=0.69

Conclusions

- Imputation methods available and userfriendly
- Word of caution for subset of SNPs that show deflated test statistics
 - Simple correction is proposed
- Some SNPs (mostly rare) would benefit from a larger HapMap

Acknowledgements

Benjamin Neale and Mark Daly

Diabetes Genetics Initiative

Richa Saxena, Benjamin Voight, Noel Burtt, Valeriya Lyssenko, Leif Groop, David Altshuler

WTCCC/UKT2D

Eleftheria Zeggini, Jonathan Marchini, Mark McCarthy,

Andrew Hattersley

FUSION

Laura Scott, Yun Li, Gonçalo Abecasis, Francis Collins, Mike Boehnke