## Second Multi-IC Symposium Working Group 2:

## **Follow-Up Studies**

Thomas Lehner, NIMH Lisa Brooks, NHGRI Rochelle Long, NIGMS Alan Michelson, NHLBI Joni Rutter, NIDA Peggy Tucker, NCI

## Follow-Up Studies in WGA Designs

- How to choose fine mapping or sequencing approaches?
- What is the likely impact of new sequencing technologies?
- What don't we know about the genome but could have great impact on follow up studies?
- At what point do we initiate functional studies and how do we determine function?
- What types and numbers of biospecimens are necessary for the different approaches?

# How to choose fine mapping or sequencing approaches

- The utility of the HapMap for fine mapping studies.
- Can the use of custom-SNP arrays fully capture variation in a gene/region?
- Rare variants in complex disorders and strategies to include them in study design.
- What does deep sequencing mean?
- Why don't we sequence everything?
- Even if we could would we want to?

Analytical challenges

#### New sequencing technologies

|                                                                         | ABI  | 454                       | <u>Solexa</u> |
|-------------------------------------------------------------------------|------|---------------------------|---------------|
| Read lengths now (bases)                                                | 650  | 250                       | 40            |
| Read lengths in a year                                                  | 650  | 400                       | 50            |
| Paired ends                                                             | yes  | year                      | soon          |
| Accuracy                                                                | high | probs<br>homopo<br>indels | high<br>d     |
| Cost / Mb<br>(Rough indication: costs ar<br>uncertain and will change!) |      | \$160                     | \$5           |
| (data from Flaine Mardis, Wash, U                                       |      |                           | s Wash II)    |

(data from Elaine Mardis, Wash. U.)

# What is the likely impact of new sequencing technologies?

- What new questions can be addressed by high-capacity human resequencing?
- What is the economic and scientific impact of new sequencing technologies?
- How many samples are needed?
- Are deep sequencing technologies feasible for complex traits? At what cost?

#### Which is the causal variant?

An association hit shows a genome region associated with a disease, and generally many variants in LD.



# What don't we know about the genome but could have great impact on follow up studies?

- What types of variation are we missing in GWAS studies?
- What is the phenotypic impact of these genomic variants? How do they contribute to genetic heterogeneity?
- How is function determined in coding regions and in non-coding regions, including gene deserts?
- Should we only focus on SNPs in Exons?
- How important are synonymous codon changes?
- What about Introns and regulatory regions?
- What have CNVs taught us about the genome?
- Most of the genome codes for nothing what if we get a hit there?

# At what point do we initiate functional studies and how do we determine function?

- What are functional studies?
- How do we understand and assay function?
- What is needed to establish causality?
  - E.g. Association between a variant(s) and phenotype (e.g. drug response) is not sufficient
- Multiple lines of evidence must agree; integrated approaches are best.

A multi-pronged approach is best (e.g. cells, mice, humans)

 Understanding mechanism often leads to paradigm shifts in thinking What strategies should be considered to have sufficient sample materials available for follow-up studies?

- Make sure study subjects are consented appropriately.
- In the beginning decide to store DNA, create cell lines or both. Can be cryo-preserverd almost indefinitely.
- The quantities of DNA required are very low.
- First choice is always DNA extracted from peripheral blood
- DNA extracted from saliva or cheek swab is an option as is whole genome amplification but with caveats