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Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically 
well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 
human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more 
than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high 
frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among 
them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor 
receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for 
several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in 
PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, 
smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide 
polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways 
involved in lung adenocarcinoma, and suggest new molecular targets for treatment. 

Lung cancer is the leading cause of cancer death, annually resulting in Environmental exposures and genetic susceptibility are also thought to 
more than one million deaths worldwide. About 1.2 million new cases contribute to cancer risk4–7. Adenocarcinomas in patientswho have never 
are diagnosed each year1 and prognoses are poor. Lung adenocarci- smoked frequently contain mutations within the tyrosine kinase domain 
noma is the most common form of lung cancer and has an average oftheepidermalgrowthfactorreceptor(EGFR) gene; those patients often 
5-yr survival rate of 15%2, mainly because of late-stage detection and a respond to tyrosine kinase inhibitor drugs such as gefitinib and 
paucity of late-stage treatments. erlotinib8–10, but usually develop drug resistance11,12. Conversely, KRAS 

Although smoking is unquestionably the leading cause of lung cancer, mutations are more common in individuals with a history of cigarette use 
approximately 10% of cases occur in patients who have never smoked3. andareassociatedwithresistancetoEGFR-tyrosine-kinaseinhibitors13,14 . 
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Previous gene resequencing efforts have identified several key 70 
15–18mutations associated with human cancers . The Tumour 

60Sequencing Project (TSP) is a pilot project to characterize cancer 
Significant on the basis of 3 methodsgenomes, and has allowed the discovery of somatic mutations in 

50 Significant on the basis of 2 methodsthe coding exons of 623 candidate cancer genes in 188 lung adeno-
Significant on the basis of 1 methodcarcinomas. Here we identify significantly mutated genes not pre­ 40
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viously associated with lung adenocarcinoma, describe relationships 
between different genetic alterations, and report correlations 
between genetic alterations and clinical features. Moreover, our 
integration of single nucleotide polymorphism (SNP) array, gene 
expression array and mutation data provides a broader view of geno­
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mic alterations in lung adenocarcinomas. These findings further our 
understanding of lung cancer and provide clues to new therapeutic 0 
targets. 

Overview of samples, genes and mutations discovered 
We selected 188 primary lung adenocarcinomas, each containing a 
minimum of 70% tumour cells as determined by study pathologists. 

Figure 1 | Significantly mutated genes in lung adenocarcinomas. The 
height of the bars represents the number of somatic mutations in each 

We screened for somatic mutations in 623 candidate genes comprising 
known oncogenes and tumour suppressor genes, protein kinase fam­
ilies, and genes in regions of copy number alteration, focusing on 
coding exons and splice sites (Supplementary Table 1). A total of 
247 megabases of tumour DNA sequence was analysed to identify 
putative mutations, and non-synonymous mutations were validated 
by orthogonal methods or confirmed by independent polymerase 
chain reaction (PCR) amplification and sequencing (Supplementary 
Methods and Supplementary Fig. 1). 

We have identified 1,013 non-synonymous somatic mutations in 
163 of the 188 tumours, including 915 point mutations, 12 dinucleo­
tide mutations (mutations affecting two consecutive bases on the 
same allele), 29 insertions and 57 deletions, with insertions/deletions 
(indels) ranging from 1 to 23 nucleotides. The point mutations 
include 802 missense, 75 nonsense, 1 read-through and 37 splice-site 
mutations (Supplementary Table 2). 

A set of 12 genes was found with significantly higher frequencies of 
nonsense, splice-site and frameshift mutations (P , 0.1), suggesting 
that they were candidate tumour suppressor genes (Supplementary 
Table 3a). Recurrent somatic mutations were observed at 28 sites 
across seven genes; these included five previously unknown sites in five 
genes (Supplementary Table 3b). In silico predictions suggest that 580 
of the missense mutations have potential functional relevance. A com­
parison of the mutations to the COSMIC19 and OMIM20 databases 
identified 823 somatic mutations and 818 mutation sites that were 
not present in these databases, respectively (Supplementary Methods 
and Supplementary Table 2). 

Significantly mutated genes in lung adenocarcinoma 
The large size of our sample set enabled the identification of mutated 
genes that show evidence for positive selection in lung adenocarci­
noma. We used three different methods (Supplementary Methods 
and Supplementary Tables 4 and 5) to determine the significance of 
the difference between the observed versus expected numbers of muta­
tions in 188 tumours. We identified a total of 26 significantly mutated 
genes, among them 17 genes are designated as significant by at least 
two approaches (Fig. 1 and Supplementary Table 6a). Note that 
LRP1B, despite its large number of mutations, was found to be signifi­
cant by only one method, mostly owing to its long coding sequence. 

The study identified many genes previously known to be mutated 
in lung adenocarcinoma, including several tumour suppressor genes 
(TP53 (ref. 21), CDKN2A (ref. 22) and STK11 (ref. 23)) and onco­
genes (KRAS24, EGFR8 and NRAS25). In addition, we found several 
new genes that were significantly mutated in this disease. 
Bona fide and putative tumour suppressor genes. The most prom­
inent case for a tumour suppressor gene is NF1, for which inactiv­
ating mutations are found in neurofibromatosis type I patients26. In  
this study, 16 NF1 mutations (4 nonsense, 5 splice-site and 1 frame-
shift mutations) were identified in 13 patients (Supplementary Table 

indicated gene in 188 tumour and normal pairs. Standard, gene-specific and 
category-based tests were used for this analysis (Supplementary 
Information). Ten genes were found to be significantly mutated by all three 
statistical methods (red bars), 7 genes by at least two methods (blue bars) 
and 9 genes by one of the three methods (green bars), for up to 26 
significantly mutated genes in total. 

2). Three tumours harboured two mutations each, although it is not 
known whether these mutations are in cis or in trans. This suggests 
potential bi-allelic inactivation of NF1 in these three patients. 

Another previously unknown mutated tumour suppressor gene in 
lung adenocarcinoma is ATM, encoding a cell-cycle checkpoint 
kinase that functions as a regulator of p53 (ref. 27). Genetic poly­
morphisms of ATM are known to affect lung cancer risk28, but only 
isolated instances of ATM somatic mutation have been reported in 
lung adenocarcinoma15. We found 14 ATM mutations in 13 
tumours, including 1 nonsense, 1 splice-site and 2 frameshift muta­
tions (Supplementary Table 2). 

Another tumour suppressor gene harbouring frequent mutations 
is RB1, which was first identified as the susceptibility gene for retino­
blastoma29. Given that DNA tumour viruses such as papillomaviruses 
typically target RB1 and TP53 simultaneously30, it is interesting to 
note that five of the seven RB1 mutations occur in tumours with TP53 
mutations, and two occur in tumours with ATM mutations, suggest­
ing that an ATM mutation may substitute functionally for a TP53 
mutation. 

APC mutations have been reported in lung squamous cell carcin­
oma and small-cell lung carcinoma31, but not in lung adenocarci­
noma. We observed 13 mutations in 11 tumours confirmed by 
pathology evaluation to be lung tumour samples and not metastatic 
colorectal carcinomas. Mutations (G34E and S37F) of the CTNNB1 
gene were observed in two other tumours. 

Deletion and epigenetic silencing of LRP1B have been previously 
observed in lung cancer cell lines and oesophageal tumours32,33. Our  
finding of 17 mutations in LRP1B further supports the notion that 
LRP1B genomic alterations are significant in lung cancer pathogenesis 
(Fig. 1). PTPRD, previously shown to be deleted in lung adenocarci­
noma34,35, is also found to be frequently mutated34. Owing to the 
absence of nonsense, splice-site or frameshift mutations in both of 
these genes in our tumour set, further evidence is required to determine 
whether they are tumour suppressors or another category of genes. 
Possible proto-oncogenes. Although the involvement of EGFR and 
ERBB2 mutations in lung cancer has been reported previously, we 
also found mutations at a significant frequency in ERBB4 (Fig. 1). 
The discovery of nine mutations in ERBB4, two of which are puta­
tively deleterious with respect to the protein tyrosine kinase domain 
and five of which are clustered in the receptor ligand binding domain, 
indicates its involvement in lung cancer (Fig. 2). We also discovered 
four mutations in ERBB2 and three in ERBB3. 

©2008 Macmillan Publishers Limited. All rights reserved 
1070 



      

NATURE | Vol 455 | 23 October 2008 ARTICLES 

L LFurin-like PTK 

a 
EGFR 

ERBB2 
ERBB3 
ERBB4 

b 

EPHA5 
EPHA3 

EPHA7 

EPHB6 
EPHB1 

Ephrin binding Fn3 Fn3 SAMPTK 

c 

FGFR2 
FGFR1 

FGFR4 

d 
NTRK1 
NTRK2 
NTRK3 

Missense mutation 

Nonsense mutation 

Insertion or deletion 

LRRNT LRR 

Ig IgIg-like PTK 

PTK 

e 

Ig Ig Ig-like PTK 

FLT1 
FLT4 
KDR 

Figure 2 | Diagrams of mutations found in the members of several receptor 
families in lung adenocarcinomas. a–e, Mutations in members of the EGF 
(a), EPH (b), FGF (c), NTRK (d) and VEGF (e) receptor families are shown. 
Protein domains are determined by using HMMPFAM. The PFAM domains 
include ‘L’ (receptor ligand binding domain), Fn3 (fibronectin type III 
domain), Ig (immunoglobulin domain), LRR (leucine rich repeat domain), 
LRRNT (leucine rich repeat amino-terminal domain), PTK (protein 

The most significantly mutated gene in the ephrin family is EPHA3 
(Fig. 1). Although isolated mutations in this gene have been 
reported15,17, this is to our knowledge the first demonstration of stat­
istical significance of EPHA3 mutations in lung adenocarcinoma. The 
11 mutations in EPHA3 are distributed along the length of the gene, 
with 8 mutations in the extracellular domain and 3 in the kinase 

Samples 
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STK11 

NF1 

EGFR 

KDR 

EPHA3 

NTRK3 

ERBB4 

EPHA5 

ATM 

TP53 

LRP1B 

RB1 

Smoking status 

Figure 3 | Concurrent and mutual exclusion of mutations observed across 
genes in lung adenocarcinomas. Tumours with and without mutations in 
the indicated genes are labelled in red and blue in the corresponding 
columns, respectively. Tumours from smokers (former and current) and 
from individuals who have never smoked are labelled in yellow and green, 
respectively. Tumours without smoking status are labelled in grey. 
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tyrosine kinase domain) and SAM (sterile a-motif). The locations of 
mutations are indicated by diamonds, circles and triangles, with filled shapes 
representing new mutations and open shapes denoting known mutations. 
The size of the shapes is positively proportional to the degree of conservation 
at the mutated residue. Representative scheme for each family is constructed 
based on the ClustalW2 alignment. Recurrent mutations are outlined in 
black. 

domain, but no hotspot positions in which mutations cluster. One 
observed mutation in EPHA3, K761N, is located in the kinase domain 
at a highly conserved position analogous to FGFR2(K641)—part of a 
newly described ‘‘molecular brake’’36. In total, we identified 37 muta­
tions in 10 of the 13 ephrin receptors sequenced, finding high muta­
tion rates in several family members (Figs 1 and 2). 

Previous mutational screening of the tyrosine kinase domain of 
NTRKs identified 9 mutations in 29 large-cell neuroendocrine carci­
nomas, but found no mutations in 443 non-small-cell lung cancers37. 
In contrast we discovered 20 mutations in NTRKs (Fig. 1) of which 7 
mutations occur within their tyrosine kinase domains, suggesting 
that the role of NTRKs is not restricted to large-cell neuroendocrine 
carcinomas. A significant number of mutations have also been iden­
tified in VEGFR and FGFR family members. In particular, four and 
three kinase domain mutations were found in KDR and FGFR4 (ref. 
38), respectively (Fig. 2 and Supplementary Table 2). 

Notably, several known oncogenes and tumour suppressor genes 
fell below the borderline of significance in our study. These genes 
include the proto-oncogenes AKT1 (in which we found two muta­
tions, including one (E17K) described as a transforming mutation in 
other cancers39), CTNNB1, ERBB2 (ref. 40) and BRAF 41, as well as the 
PTEN tumour suppressor gene42. These results offer enriched data for 
investigating mutated functional domains (Supplementary Methods 
and Supplementary Table 6b) and for analysing interactions among 
mutations and pathways. 

Concurrent and mutually exclusive mutations 
We searched for correlations among mutations in 29 genes with at 
least 6 mutations each. The strongest positive correlations were for 
mutations in PIK3C3 and PTPRD, NTRK2 and PDGFRA, FGFR4 and 
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NTRK2, and FGFR4 and PDGFRA (P # 0.01; Supplementary 
Table 7a, c). The well-known example of negative correlation of 
mutations in EGFR and KRAS14 was confirmed in this study 
(P , 1 3 10207), with no sample having mutations in both genes 
(Fig. 3). We also found negative correlation between mutations in 
EGFR and STK11 (P 5 7 3 10206), consistent with a previous 
report43. Notably, samples with mutations in several receptor tyro­
sine kinase genes do not harbour any mutations in EGFR (Fig. 3). We 
also detected a strong negative correlation between mutations in 
ATM and TP53 (P 5 9.5 3 10205; Fig. 3), suggesting that mutations 
in ATM and TP53 may be independently sufficient for the loss of cell-
cycle checkpoint control. 

Distributions of mutations in individual cancer genomes 
We studied the spectrum of mutations observed across tumours, in 
relation to the overall mutation rate and to clinical phenotypes. We 
found that mutations in TP53, PRKDC, SMG1 and a set of other 
genes (Supplementary Table 8) are positively correlated with higher 
mutation rates. Of particular interest, four of the six most highly 
mutated tumours have mutations in PRKDC, which encodes a pro­
tein involved in the repair of double-stranded DNA breaks44 (Fig. 4a). 
The average of 24.3 mutations in tumours having PRKDC mutations 
is significantly higher than the average of 4.7 mutations in tumours 
without PRKDC mutations (P 5 3.52 3 10259). 

We also determined that a set of genes including EGFR (P 5 0.05) 
and PTEN (P 5 0.03) tended to be mutated in tumours with lower-
than-average mutation rates. Mutations in EGFR and PTEN may 
have strong tumour-growth-promoting capability and thereby 
reduce the selection pressure for acquiring further mutations. 
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Figure 4 | Mutation distributions in individual lung adenocarcinoma 
genomes. a, Tumours with mutations in PRKDC showed higher than 
average mutation rates, and conversely tumours with mutations in EGFR 
had lower than average mutation rates. b, Smokers have on average threefold 
higher mutation rates compared to individuals who have never smoked. 

Integration with copy number and gene expression data 
Subsets of the TSP tumour collection were analysed using SNP array 
(n 5 383), re-sequencing (n 5 188) and gene expression array 
(n 5 75). All tumours used for sequencing and expression studies 
have been analysed using SNP array. Significant correlation (false 
discovery rate , 0.05) between copy number and expression level 
in 75 tumours was observed, similar to the trend seen in a previous 
study45 (Supplementary Information and Supplementary Table 9). 

Comparison of mutation data with copy number analysis34 shows 
that several significantly mutated genes are present in peaks of copy 
number gain (EGFR and KRAS) or loss (CDKN2A, PTPRD and RB1). 
Other amplified genes are subject to recurrent mutations (for example 
ERBB2, MDM2 and TERT) although the mutation frequency does not 
reach statistical significance. In parallel, several significantly mutated 
genes show rare amplifications or deletions. The NRAS oncogene is 
subject to rare amplification in lung adenocarcinoma (Supplementary 
Fig. 4). The amplification of EPHA3 and KDR (Supplementary Figs 4 
and 5) seen in two tumours each, indicates that these genes are pro­
bably proto-oncogenes. Conversely, we found NF1 to be homozy­
gously deleted in one tumour (Supplementary Fig. 4). 

Furthermore, we found that mutations in PTEN, APC and TP53 
were correlated with copy number loss (Supplementary Table 10a), 
suggesting that these three genes might each undergo homozygous 
loss of function. Conversely, mutations in EGFR, HCK, KRAS and 
EPHB1 were associated with copy number gain (Supplementary 
Table 10a), consistent with a proto-oncogene function. Notably, 
three of the six tumours with the highest EGFR amplification also 
have mutations in EGFR, and five of the six tumours with the highest 
KRAS amplification also harbour KRAS mutations (Supplementary 
Table 11). In many cases, the mutant allele is preferentially amplified 
(Supplementary Fig. 6) but larger sample sets are required to deter­
mine the statistical significance. 

We investigated the correlation among mutations, copy number 
and gene expression in 41 lung adenocarcinomas with all three types 
of data. Mutations in TP53 (Fig. 5a) and APC (Fig. 5b) are correlated 
with lower copy number and lower messenger RNA expression levels. 
Correlations with lower gene expression are also seen for STK11 and 
ATM mutations (Supplementary Table 10b). Mutations in these 
tumour suppressor genes could cause instability of their cognate 
mRNAs. Conversely, mutations in EGFR (Fig. 5c) and KRAS 
(Fig. 5d) are associated with higher mRNA expression levels as well 
as higher copy number, as are EPHB1 mutations (Supplementary 
Table 10b). 

Integrated analysis of significantly mutated pathways 
Further insight into the role of genomic alterations underlying lung 
adenocarcinoma was gained by examining the distribution of muta­
tions across Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways (Fig. 6, Supplementary Methods and Supplementary 
Tables 11–13). 

In the MAPK pathway we found 289 mutations in 56 genes, 
including members of EGF, FGF and NTRK receptor families, and 
KRAS and NF1 (Fig. 6). Notably, 132 of the 188 tumours sequenced 
have at least one mutation in the MAPK pathway, underscoring its 
pivotal role in lung cancer. 

We identified mutations in multiple components of the Wnt path­
way, including APC, CTNNB1, SMAD2, SMAD4 and GSK3B. Of the 
188 lung adenocarcinomas 29 showed mutations in this pathway 
(not including mutations in TP53, which is included in the Wnt 
pathway in KEGG), which is to our knowledge the first demonstra­
tion of Wnt alteration in lung adenocarcinoma. At least one muta­
tion in the p53 pathway was seen in 85 tumours. In addition to the 66 
TP53 mutations, frequent mutations were found in ATM and ampli­
fications were identified in MDM2 (Fig. 6). 

We have found an array of mutations in PTEN, PI3K genes and 
AKT genes—all members of the insulin/PI3K/AKT signalling arm of 
this pathway (Fig. 6). In addition, 13 tumours were found to carry 16 
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Figure 5 | DNA copy number, gene expression, and mutation distributions 
in lung adenocarcinomas. a–d, Copy number, gene expression and 
mutation status at TP53 (a), APC (b), EGFR (c) and KRAS (d) loci in 41 lung 

NF1 mutations, the deficiency of which has been implicated in RAS-
and PI3K-dependent hyperactivation of the mTOR pathway46. More 
than 30 mutations were also discovered in STK11, a member of the 
AMP-dependent protein kinase signalling pathway. By sequencing 
70 polymorphic STK11 SNP sites, we identified 17 tumours with loss 
of heterozygosity (LOH) (as defined by at least three consecutive 
heterozygous loci that reduced to homozygosity in the tumour; 
Supplementary Table 14). Two tumours having clear regions of 
LOH at STK11 also harboured one nonsense mutation and one dele­
tion, suggesting possible homozygous loss of function. Six tumours 
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Loss of heterozygosity 

Figure 6 | Significantly mutated pathways in lung adenocarcinomas. 
Genetic alterations in lung adenocarcinoma frequently occur in genes of the 
MAPK signalling, p53 signalling, Wnt signalling, cell cycle and mTOR 
pathways. Oncoproteins are indicated in pink to red and tumour suppressor 
proteins are shown in light to dark blue. The darkness of the colours is 
positively correlated to the percentage of tumours with genetic alterations. 
Frequency of genetic alterations for each of these pathway members in 188 
tumours is indicated. Genes (EGFR, FGFR1, FGFR4, KDR, EPHA3, KRAS, 
NRAS, MDM2 and CDK6) lying in regions of focal amplification were 
analysed for the percentage of samples with copy number amplification. 
Samples with greater than 2.5 and fewer than 1.5 DNA copies were 
considered as amplified and deleted, respectively. Selected components of 
each pathway are shown in the figure. 
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adenocarcinomas. Normalized gene expression and log2 DNA copy number 
ratio in each sample were determined as described in Supplementary 
Information. 

have mutations in the tuberous sclerosis complex 1 and 2 (TSC1 and 
TSC2). In summary, mTOR pathway components are mutated in 17 
genes and in more than 30% of tumours sequenced, not including 
tumours with KRAS mutations. Our finding suggests that dysregula­
tion of mTOR is important for lung carcinogenesis and hence is a 
potential therapeutic target. The effectiveness of rapamycin and its 
analogues in the treatment of lung adenocarcinoma should be further 
tested. 

There are nine mutations in CDKN2A and one each in CDKN2B 
and CDKN2C, as well as seven mutations in RB1. Furthermore, as 
described there are frequent focal amplifications of CDK4 and CDK6 
as well as CCND1 and CCNE1, and frequent deletions of RB1, 
CDKN2A and CDKN2B (ref. 34; Fig. 6). 

Mutations correlated with clinical features 
We investigated the distribution of mutations across different clinical 
subgroups, including smoking status, tumour grade, tumour stage 
and histological subtype (Fig. 4, Supplementary Fig. 7 and 
Supplementary Table 15). 

The average number of mutations in smokers is significantly 
higher than in individuals who have never smoked (P 5 0.021, t-test), 
and notably none of the tumours from those who have never smoked 
had more than five mutations in the resequenced genes, whereas 
smokers had as many as 49 mutations (Fig. 4b). Consistent with 
previous findings47, we observed that EGFR mutations correlate with 
the status of patients who have never smoked (P 5 0.0046, Fisher’s 
exact test), whereas KRAS mutations correlate with smoker status 
(P 5 0.021). We also have observed correlation between mutations 
in STK11 and smokers (P 5 0.044), consistent with a previous 
report43. 

As expected, tumours with higher grade had accumulated more 
mutations than tumours of lower grade (P 5 0.001; Supplementary 
Fig. 7a). Some genes showed a clear increase in the frequency of 
somatic mutation with tumour grade, suggesting that these genes 
may have a role in transformation or progression. A clear example 
is TP53, with somatic mutations in 13%, 24% and 52% of tumours of 
grade 1, 2 and 3, respectively (correlation P 5 7.8 3 10206), consist­
ent with a previous report48. Other genes in which the mutation 
frequency positively correlated with tumour grade were LRP1B 
(P 5 0.013), INHBA (P 5 0.013) and PRKDC (P 5 0.018). 
Conversely, other genes showed no significant correlation with 
tumour grade, which could indicate that mutations in this group 
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of genes are critical early in tumorigenesis. A clear example is KRAS, 
with somatic mutations in 38%, 32% and 32% of tumours of grades 
1, 2 and 3, respectively. 

Our analysis shows that tumours of higher stage had accumulated 
more mutations than tumours of lower stage (P 5 0.006; 
Supplementary Fig. 7b), although this rate varies widely among indi­
vidual tumours. We found significant correlations between tumour 
stage and mutations in NTRK2 (P 5 0.003), EPHA7 (P 5 0.003), 
PRKCG (P 5 0.0087) and FLT4 (P 5 0.0093). 

There are several subclasses of lung adenocarcinoma, including 
acinar, papillary, BAC (bronchioloalveolar carcinoma) and solid, on 
the basis of World Health Organization standards49,50. Our most not­
able finding was that mutations in LRP1B, TP53 and INHBA show 
various levels of negative correlation with acinar, papillary and BAC 
subtypes, but significant positive correlation with solid subtype 
(LRP1B, P 5 2.29 3 10205; TP53, P 5 0.002; INHBA, P 5 0.0023) in 
152 tumours with subtype information. On the other hand mutations 
in EGFR showed moderate negative correlation with the solid subtype 
(P 5 0.13) and significant positive correlation with the papillary sub­
type (P 5 0.041), consistent with a previous report50. 

Furthermore, our analysis shows that the 25 patients in which no 
mutations were found have diverse clinical features and some show a 
comparable extent of copy number alterations compared to samples 
having mutations (Supplementary Table 16). Of note, 16 of 25 
tumours without discovered mutations in the 623 genes are from 
the group with higher stromal contamination rate (Supplementary 
Table 17), suggesting that stromal contamination might reduce the 
sensitivity in discovering mutations. 

Discussion 
Our study represents to our knowledge the largest effort so far to 
characterize genomic alterations in lung adenocarcinoma. Before this 
study, there were five genes known to be mutated at high frequency in 
lung adenocarcinoma—TP53, KRAS, STK11, EGFR and CDKN2A— 
as well as several known genes with lower mutation frequencies— 
PTEN, NRAS, ERBB2, BRAF and PIK3CA. After sequencing 623 
genes in 188 tumours, we have identified further significantly 
mutated genes, more than doubling the list. The newly identified 
genes include tumour suppressor genes (NF1, RB1, ATM and APC) 
along with tyrosine kinase genes (ephrin receptor genes, ERBB4, 
KDR, FGFR4 and NTRK genes) that may function as proto-onco­
genes. We have demonstrated that many of these genes are also 
targeted by copy number alterations and/or gene expression changes. 
Additionally, there is a significant excess of mutations and copy 
number alterations in genes from the MAPK, p53, Wnt, cell cycle 
and mTOR signalling pathways, suggesting links to the disease. Our 
results also demonstrate that lung adenocarcinomas are heterogen­
eous, with diverse combinations of mutations yet commonality in the 
main pathways affected by these mutations. The mutation rate varies 
across tumour samples and is probably influenced by DNA mismatch 
repair defects and clinical features. The newly discovered genes and 
pathways may expand the range of potential therapeutic options for 
treatment of lung adenocarcinoma. For example, inhibitors of the 
MEK kinase could be tested in tumours with NF1 mutations, whereas 
inhibitors of KDR, such as sorafenib and sunitinib, might be tested in 
tumours with KDR mutations. 

Although the analysis of the 188 TSP tumours is the largest tumour­
type-specific screen for mutations to date, it does not have complete 
power to detect some genes known to be associated with lung cancer. 
Thus, larger sample sizes will be desirable. Moreover, these approaches 
should be extended to other types of lung cancer, metastatic lung 
cancer, and other cancers to determine the underlying genetic basis 
of those diseases and to highlight potential approaches for diagnosis 
and therapy. These studies can also be extended by comprehensive 
resequencing of the entire transcriptome, the entire collection of 
exons or the entire genome in large collections of cancers. Such studies 

should be feasible with next-generation sequencing technologies and 
at present are being prototyped within this programme. 

METHODS SUMMARY 
Source DNAs were extracted from primary lung adenocarcinoma tumours and 
adjacent normal tissue (or peripheral blood lymphocytes). Collection and use of 
all tissue samples were approved by the human subjects Institutional Review 
Boards of participating institutions. These samples were snap-frozen, anon­

ymized and contributed along with matched normal samples by the Dana-

Farber Cancer Institute, MD Anderson Cancer Center, Memorial Sloan-

Kettering Cancer Center, University of Michigan, and Washington University 
in St Louis. Affymetrix 250K StyI Array data were used to estimate the level of 
stromal contamination and thereby to select 188 tumours and matched normals 
for the resequencing study. Whole-genome amplification was performed using 
Qiagen REPLI-g Service before sequencing. All coding exons and splice-site 
sequences of 623 target genes were PCR amplified and sequenced on both strands 
for all of the tumours. Additional data were generated until more than 90% of 
targeted exonic and splice-site bases were covered by at least one sequence read. 
Traces were automatically processed to identify SNPs and indels. Sequence data 
were obtained for the matched normals from a variety of platforms to determine 
the somatic status of new variants and unvalidated dbSNPs. Further data were 
generated using orthogonal technologies to validate the candidate somatic muta­

tions. Synonymous somatic mutations identified in 250 genes were used to 
estimate the background mutation rate, which was used in statistical calculations 
to identify significantly mutated genes. Statistical approaches were used to 
identify significantly mutated pathways. Expression profiles were determined 
for 75 TSP tumours using the Affymetrix U133Plus2 GeneChip. Further analyses 
were performed to determine correlation between mutation and copy number 
variation, mutation and gene expression, copy number variation and gene 
expression, as well as mutation and clinical attributes. 
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