LARGE SCALE ANALYSIS OF GENE EXPRESSION

Evolution and Revolution

Current Topics in Genome Analysis 2012

Paul Meltzer

No Relevant Financial Relationships with Commercial Interests
AFTER THE SEQUENCE:
WHOLE GENOME APPROACHES TO BIOLOGICAL QUESTIONS

GENE EXPRESSION
GENE VARIATION
GENE FUNCTION

MICROARRAYS PROVIDE A TOOL FOR WHOLE GENOME ANALYSIS

PRIMARY IMPACT:
ACCELERATED DISCOVERY AND HYPOTHESIS GENERATION
PUBMED CITATIONS FOR DNA MICROARRAYS

- ACCELERATE DISCOVERY
- NEW THEORETICAL CONSTRUCTS
- SYSTEMS APPROACH
INCREASE IN FEATURE DENSITY

SEQUENCING TECHNOLOGIES MAY SUPPLANT ARRAYS IN MANY APPLICATIONS

MICROARRAY TERMINOLOGY

- Feature—an array element
- Probe—a feature corresponding to a defined sequence
- Target—a pool of nucleic acids of unknown sequence
POSSIBLE ARRAY FEATURES

- Synthetic Oligonucleotides

- PCR products from
 - Cloned DNAs
 - Genomic DNA

- Cloned DNA

OLIGONUCLEOTIDE ARRAY DESIGN

- Extremely flexible
 - 3’ bias
 - full length
 - exon specific
 - candidate transcripts
 - miRNAs

- Very high density possible

- Requires sequence data
Microarray Manufacture

• Printing
Microarray Manufacture

• Printing

• Synthesis *in situ*
 light directed
 mechanically directed
LIGHT DIRECTED Oligonucleotide Synthesis

[Diagram of Light Directed Oligonucleotide Synthesis process]

LIGHT DIRECTED Oligonucleotide Synthesis

[Another diagram showing a different aspect of the synthesis process]

[Diagram showing the integration of digital and physical elements in the synthesis process]
INK JET DIRECTED SYNTHESIS

RANDOMLY POSITIONED HIGH DENSITY ARRAYS OF ADDRESSABLE OLIGONUCLEOTIDES COUPLED TO BEADS
MICROARRAY READOUT

• Determine quantity of target bound to each probe in a complex hybridization
• Must have high sensitivity, low background
• High spatial resolution essential
• Dual channel capability useful
• Fluorescent tags meet these demands

Building Microarrays

• Methods are applicable to any organism
• Sequenced organisms: oligonucleotides
• Unsequenced organisms: cloned DNAs
Building Microarrays

- Density depends on specific technology
- Pin printing based methods limited to 40-50K
- In situ synthesis/bead arrays: millions
- Array design is linked to purpose.

Laboratory Essentials

- Arrays
 - Hybridization and Wash Equipment
 - Scanner
- Software for processing array image
- Software for data analysis and display
 - Bioinformatics collaborator
DNA Microarray Applications

- Gene Expression
- Comparative Genomic Hybridization
- Resequencing (SNPs)
- Transcription factor localization
- Chromatin/DNA modification

Reports on Microarray Data Quality
Nature Biotechnology
September 2006
Accessing Expression Data

- Individual Lab and Journal Sites; public databases

GEO (Gene Expression Omnibus)

Currently contains expression data on 592,204 sample sets.

EMBL-EBI (European Bioinformatics Institute)

http://www.ebi.ac.uk/microarray-as/ae/
Publishing Expression Data

• MIAME standard

Minimum Information about a Microarray Experiment

• Format required by many journals
• Essential for database submissions

http://www.mged.org/Workgroups/MIAME/miame.html

STRATEGIES FOR SIGNAL GENERATION FROM mRNA

• Fluorochrome conjugated cDNA

• Ligand substituted nucleotides with secondary detection (e.g. biotin-streptavidin)
 • Radioactivity
 • RNA amplification
ONE COLOR HYBRIDIZATION ON AN OLIGO ARRAY
Output of Microarray Analysis:

expression ratio
(2 color hybridization)

or

relative expression level
(1 color hybridization)

Both types of data can be analyzed with essentially the same tools.

APPLICATIONS OF EXPRESSION ARRAYS

• Expression profiling
 Power arises from increasing sample number

• Direct comparisons (Induction)
 Biological system critical

• Genome Annotation
A RECURRING PROBLEM

Disease Genes

Transcription factors

Hormones/growth factors

Drugs

Toxins

Infectious agents

Physical agents

siRNA’s

Downstream Genes

• Direct targets

• Indirect targets

EXPRESSION DATA ANALYSIS

• Large amount of data

Examples: 200 samples x 25000 probes = 5,000,000 data points

• Requires analysis and visualization tools

EXPRESSION DATA ANALYSIS

• Check quality of individual experiments

• Preprocessing

 Normalization

 Remove genes which are not accurately measured

 Remove genes which are similarly expressed in all samples

• Unsupervised Clustering

• Supervised Clustering

MICROARRAY SCATTER PLOT
Unsupervised Clustering

How do genes and samples organize into groups?

Powerful method of data display.
Does not prove the validity of groups.

- Clustered Samples Are Biologically Similar
 - Clusters of Co-expressed genes
 - May be functionally related
 - May be enriched for pathways

UNSUPERVISED CLUSTERING IS BASED ON A GLOBAL SIMILARITY METRIC

Khan et al. Can Res 58:5009
Matrix of Pearson Correlation Coefficients

Distance Map

<table>
<thead>
<tr>
<th></th>
<th>RH3</th>
<th>RH5</th>
<th>RH8</th>
<th>RE8</th>
<th>A204</th>
<th>NGP127</th>
<th>TC71</th>
<th>UACC-903</th>
<th>MDA-MB-436</th>
<th>PC3</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARMS1</td>
<td>0.347</td>
<td>0.606</td>
<td>0.726</td>
<td>0.683</td>
<td>0.634</td>
<td>0.615</td>
<td>0.500</td>
<td>0.498</td>
<td>0.426</td>
<td>0.417</td>
</tr>
<tr>
<td>RH3</td>
<td>0.795</td>
<td>0.767</td>
<td>0.686</td>
<td>0.606</td>
<td>0.807</td>
<td>0.844</td>
<td>0.565</td>
<td>0.566</td>
<td>0.391</td>
<td>0.452</td>
</tr>
<tr>
<td>RH5</td>
<td>0.770</td>
<td>0.778</td>
<td>0.672</td>
<td>0.744</td>
<td>0.464</td>
<td>0.486</td>
<td>0.559</td>
<td>0.688</td>
<td>0.555</td>
<td>0.557</td>
</tr>
<tr>
<td>RH8</td>
<td>0.762</td>
<td>0.667</td>
<td>0.251</td>
<td>0.327</td>
<td>0.486</td>
<td>0.607</td>
<td>0.40</td>
<td>0.532</td>
<td>0.647</td>
<td></td>
</tr>
<tr>
<td>RE8</td>
<td>0.751</td>
<td>0.746</td>
<td>0.35</td>
<td>0.463</td>
<td>0.582</td>
<td>0.446</td>
<td>0.479</td>
<td>0.484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A204</td>
<td>0.250</td>
<td>0.271</td>
<td>0.281</td>
<td>0.545</td>
<td>0.509</td>
<td>0.389</td>
<td>0.405</td>
<td>0.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NGP127</td>
<td>0.424</td>
<td>0.361</td>
<td>0.398</td>
<td>0.368</td>
<td>0.396</td>
<td>0.377</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TC71</td>
<td>0.46</td>
<td>0.426</td>
<td>0.479</td>
<td>0.478</td>
<td>0.421</td>
<td>0.371</td>
<td>0.368</td>
<td>0.366</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UACC-903</td>
<td>0.507</td>
<td>0.538</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDA-MB-436</td>
<td>0.662</td>
<td>0.562</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hierarchical Clustering Dendrogram

20
DATA DISPLAY BY MULTIDIMENSIONAL SCALING

MDS PLOT

Allander et al. Cancer Res. 2001 15:8624
MULTIDIMENSIONAL SCALING OR PRINCIPLE COMPONENT ANALYSIS CAPTURE VARIATION IN SAMPLES AND ARE EXCELLENT VISUALIZATION TOOLS

Khan et al
Nat Med
7:673

UNCLUSTERED DATA (6 GENES IN 200 SAMPLES)
CLUSTERING GENES ONLY

CLUSTERING GENES AND SAMPLES
CLUSTERING GENES AND SAMPLES

DATA FROM GEO

Supervised Clustering

What genes distinguish samples in selected groups from each other?

- Choice of groups can be based on any known property of the samples.
- Many possible underlying methods: t-test or F-statistic frequently used.
- Output includes ranked gene list.
- Leads to the development of classifiers which can be applied to unknown samples.
- Must address the problem of false discovery due to multiple comparisons and discrepancy between sample/gene numbers.
GAP BETWEEN CURVES INDICATES OVERABUNDANCE OF INFORMATIVE GENES

DEMONSTRATED BY RANDOM PERMUTATION TEST

Allander et al. Cancer Res. 2001 15:8624

SUPERVISED METHODS GENERATE RANKED GENE LISTS

TOP DISCRIMINATORS FOR GIST

<table>
<thead>
<tr>
<th>Rank</th>
<th>Weight</th>
<th>Gene Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.55575</td>
<td>v-kit sarcoma oncogene</td>
</tr>
<tr>
<td>2</td>
<td>6.48306</td>
<td>G coupled receptor 20</td>
</tr>
<tr>
<td>3</td>
<td>4.60057</td>
<td>G coupled receptor 20</td>
</tr>
<tr>
<td>4</td>
<td>4.51681</td>
<td>annexin A3</td>
</tr>
<tr>
<td>5</td>
<td>3.33057</td>
<td>KIAA0353 protein</td>
</tr>
<tr>
<td>6</td>
<td>3.31734</td>
<td>phosphofructokinase</td>
</tr>
<tr>
<td>7</td>
<td>2.95095</td>
<td>DKFZP434N161 n</td>
</tr>
<tr>
<td>8</td>
<td>2.83435</td>
<td>protein kinase C, theta</td>
</tr>
<tr>
<td>9</td>
<td>2.79721</td>
<td>butyrylcholinesterase</td>
</tr>
<tr>
<td>10</td>
<td>2.72752</td>
<td>annexin A3</td>
</tr>
</tbody>
</table>
HIERARCHICAL CLUSTERING OF SAMPLES/GENES DISCRIMINATING GASTROINTESTINAL STROMAL TUMOR USING THE GENES SELECTED BY SUPERVISED ANALYSIS

KIT, THE MUTATIONAL AND THERAPEUTIC TARGET IS HIGHLY SIGNIFICANT.

Allander et al. Cancer Res. 2001 15:8624

CHARACTERISTIC PATTERNS OF GENE EXPRESSION IN DIFFERENT SARCOMAS

Baird et al. Cancer Res 2005
CLUSTERING GENES AND SAMPLES

Separation of High and Low Grade Ductal Carcinoma In Situ

GENOMICS FROM BENCH TO BEDSIDE

WHOLE GENOME

→

GENE SELECTION

→

GENE VALIDATION

→

ASSAY DEVELOPMENT
SIGNAL STRENGTH VARIES IN TISSUE PROFILING EXPERIMENTS

THE MOST INTERESTING QUESTIONS TEND TO BE ASSOCIATED WITH WEAKER SIGNAL.

CONSIDER A SAMPLE SET
CONSIDER A SAMPLE SET

THESE ARE EASY TO DISTINGUISH BY ONE MEASUREMENT PER INDIVIDUAL.

CONSIDER A SAMPLE SET

TUMORS

EXPRESSION LEVEL
(HIGHLY INFORMATIVE GENE)

THESE ARE EASY TO DISTINGUISH BY ONE MEASUREMENT PER INDIVIDUAL.
CONSIDER A SAMPLE SET

THESE ARE HARDER TO DISTINGUISH. REQUIRE MORE THAN ONE MEASUREMENT PER INDIVIDUAL.
CONSIDER A SAMPLE SET

TUMORS

EXPRESSION LEVEL (POORLY INFORMATIVE GENE)

THESE ARE HARDER TO DISTINGUISH. REQUIRE MORE THAN ONE MEASUREMENT PER INDIVIDUAL.

WE CAN TELL APPLES FROM ORANGES.

CAN WE DISTINGUISH DIFFERENT KINDS OF APPLES?
A CONTINUUM OF POSSIBLE OUTCOMES FROM MICROARRAY RESEARCH

- SOME FEATURES WILL SEPARATE TUMORS EASILY INTO CLASSES, AND MIGHT BE REDUCED TO SINGLE GENE TESTS, IMPLEMENTED IN A CONVENTIONAL FASHION.

- OTHERS WILL BE MORE DIFFICULT, AND REQUIRE MULTIPLE GENE MEASUREMENTS.

- MANY CLINICALLY RELEVANT FEATURES APPEAR TO FALL WITHIN THIS DIFFICULT GROUP.

- SOME GENES WILL SHOW DIFFERENCES BETWEEN GROUPS OF SAMPLES BY CHANCE ALONE.

- THERE MAY BE NO ONE GENE WHICH SEPARATES GROUPS RELIABLY.

- FIND THE MOST INFORMATIVE GENES AND USE THEM IN COMBINATION.
RISK OF OVERFITTING IN CLINICAL STUDIES WITH SMALL SAMPLE SETS

NEED INDEPENDENT VALIDATION SETS.

Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. Dupuy A, Simon RM.

BACKGROUND: Both the validity and the reproducibility of microarray-based clinical research have been challenged. There is a need for critical review of the statistical analysis and reporting in published microarray studies that focus on cancer-related clinical outcomes. METHODS: Studies published through 2004 in which microarray-based gene expression profiles were analyzed for their relation to a clinical cancer outcome were identified through a Medline search followed by hand screening of abstracts and full text articles. Studies that were eligible for our analysis addressed one or more outcomes that were either an event occurring during follow-up, such as death or relapse, or a therapeutic response. We recorded descriptive characteristics for all the selected studies. A critical review of outcome-related statistical analyses was undertaken for the articles published in 2004. RESULTS: Ninety studies were identified, and their descriptive characteristics are presented. Sixty-eight (76%) were published in journals of impact factor greater than 6. A detailed account of the 42 studies (47%) published in 2004 is reported. Twenty-one (50%) of them contained at least one of the following three basic flaws: 1) in outcome-related gene finding, an unstated, unclear, or inadequate control for multiple testing; 2) in class discovery, a spurious claim of correlation between clusters and clinical outcome, made after clustering samples using a selection of outcome-related differentially expressed genes; or 3) in supervised prediction, a biased estimation of the prediction accuracy through an incorrect cross-validation procedure. CONCLUSIONS: The most common and serious mistakes and misunderstandings recorded in published studies are described and illustrated. Based on this analysis, a proposal of guidelines for statistical analysis and reporting for clinical microarray studies, presented as a checklist of "Do's and Don'ts," is provided.
MICROARRAY STUDIES GENERATE ORGANIZED LIST OF GENES

- Often cryptic and hard to interpret.
- Hypothesis generating, but this is often rather subjective.
- Seldom provide strong evidence for a specific mechanism.
- Expression data is intrinsically limited.

GETTING BEYOND GENE LISTS

- Optimal use of gene annotations.
 - Gene Ontology (http://david.abcc.ncifcrf.gov/)
- Optimizing use of public data.
 - GEO, ARRAY EXPRESS, ACADEMIC DATA
 - GENE SIGNATURE BASED METHODS (Gene Set Enrichment Analysis).
GENE ONTOLOGY AND PROMOTER DATABASES CAN HELP FIND BIOLOGY

GENE ONTOLOGY CATEGORIES AFFECTED BY ONCOGENE KNOCKDOWN IN EWING'S SARCOMA

KAUER ET AL. PLOS ONE 4:e5415 2009
WHAT SHOULD YOU LOOK FOR IN A CLINICAL MICROARRAY STUDY?

ARE MICROARRAY TECHNOLOGIES READY TO BE IMPLEMENTED IN CLINICAL PRACTICE?
WHAT TO LOOK FOR IN CLINICAL CORRELATIVE STUDIES USING MICROARRAYS

• WELL DEFINED QUESTION AND PATIENT SAMPLE.

• HIGH QUALITY ARRAY MEASUREMENTS (HARD TO ASSESS WITHOUT REFERENCE TO PRIMARY DATA—SHOULD BE MADE PUBLIC).

• APPROPRIATE AND RIGOROUS STATISTICAL ANALYSIS OF ARRAY DATA.

• FORMAL CLASSIFIER THAT CAN BE APPLIED TO NEW SAMPLES.

• VALIDATION SAMPLE SET.

WHAT TO LOOK FOR IN CLINICAL CORRELATIVE STUDIES USING MICROARRAYS

• GOAL SHOULD BE TO SEEK AND VALIDATE CLINICALLY RELEVANT SIGNATURES WITHIN DEFINED PATIENT GROUPS FOR WHICH NO CURRENT FEATURES ADEQUATELY ANSWER THE CLINICAL QUESTION POSED.
EXPRESSION PROFILING IN THE CLINIC?

PROBLEMS:

• SPECIALIZED TECHNOLOGY
• RNA IS UNSTABLE
• FROZEN TISSUE NOT PART OF USUAL OR SAMPLE FLOW

OPTIONS:

• REFERENCE LABORATORIES
• RNA PRESERVATIVES
• USE OF PARAFFIN EMBEDDED MATERIALS.

• USE ARRAYS FOR DISCOVERY TO EXTRACT SIGNATURES WHICH CAN BE ASSAYED WITH ALTERNATIVE TECHNOLOGIES.
FDA APPROVED TESTS FOR BREAST CANCER
BASED ON EXPRESSION STUDIES

70 GENE MICROARRAY SIGNATURE

Van de Vijver et al
NEJM 347:1999

Multigene RT-PCR Signature

Paik et al NEJM 351:2817

THEY`RE EVERYWHERE!

http://pathogenomics.bham.ac.uk/hts/
PubMed Citations for RNA-Seq

The transcriptional landscape of the yeast genome defined by RNA sequencing.
Science. 2008 Jun 6;320(5881):1344-9

Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution.

Mapping and quantifying mammalian transcriptomes by RNA-Seq.
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B.
ARRAYS VS. NEXT GENERATION SEQUENCING

- ARRAY TECHNOLOGIES MEASURE THE RELATIVE ABUNDANCE OF NUCLEIC ACIDS OF DEFINED SEQUENCE IN A COMPLEX MIXTURE.

- SEQUENCING CAN ACCOMPLISH THE SAME THING.

<table>
<thead>
<tr>
<th>MICROARRAYS</th>
<th>SEQUENCING</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROS</td>
<td>PROS</td>
</tr>
<tr>
<td>READILY AVAILABLE MATURE</td>
<td>WHOLE GENOME DATA</td>
</tr>
<tr>
<td>TECHNOLOGY</td>
<td>RELATIVELY UNIFORM ANALYTICAL PIPELINE</td>
</tr>
<tr>
<td>RELATIVELY INEXPENSIVE</td>
<td>FREE OF HYBRIDIZATION ARTIFACTS</td>
</tr>
<tr>
<td>EFFECTIVE WITH VERY COMPLEX</td>
<td>POSSIBILITY OF ONE PLATFORM FOR ALL APPLICATIONS</td>
</tr>
<tr>
<td>SAMPLES</td>
<td></td>
</tr>
<tr>
<td>HUNDREDS OF SAMPLES PRACTICAL</td>
<td></td>
</tr>
<tr>
<td>CAN TARGET SUBSET OF GENOME</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CONS</td>
<td>CONS</td>
</tr>
<tr>
<td>REQUIRE PLATFORM AND APPLICATION</td>
<td>IMMATURE TECHNOLOGY</td>
</tr>
<tr>
<td>SPECIFIC DATA PROCESSING</td>
<td>TECHNOLOGY SPECIFIC ARTIFACTS</td>
</tr>
<tr>
<td>PRONE TO PLATFORM SPECIFIC</td>
<td>RESOURCE INTENSIVE</td>
</tr>
<tr>
<td>ARTIFACTS</td>
<td>COMPUTATIONALLY INTENSIVE</td>
</tr>
<tr>
<td>MANY SOURCES OF NOISE</td>
<td>NO STANDARD ANALYSIS YET</td>
</tr>
<tr>
<td>WHOLE GENOME STUDIES GENERALLY</td>
<td>LOWER SAMPLE THROUGHPUT</td>
</tr>
<tr>
<td>REQUIRE MANY ARRAYS, INCREASING</td>
<td></td>
</tr>
<tr>
<td>SAMPLE REQUIREMENTS AND</td>
<td></td>
</tr>
<tr>
<td>COMPLICATING ANALYSIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MEASURING GENE EXPRESSION BY RNA SEQUENCING

ADVANTAGES

- RNA SEQUENCE VARIATIONS DETECTED AT SINGLE NUCLEOTIDE RESOLUTION
 - ALLELE SPECIFIC EXPRESSION
 - MUTATIONS
 - RNA EDITING

- RNA STRUCTURE: SPLICING, START SITES, TERMINATION SITES; REARRANGEMENTS

- DETECTED SIGNALS ARE RELATIVELY UNAMBIGUOUS; POTENTIAL TO OUTPERFORM MICROARRAY

- DE NOVO ASSEMBLY IS POSSIBLE

MEASURING GENE EXPRESSION BY RNA SEQUENCING

- FULL LENGTH mRNA----RNA-Seq
- TAG SEQUENCING (SAGE-LIKE)
- PolyA vs. Total (ribosomal depleted)
- Strand specific vs. non-strand specific
- miRNA sequencing
- lincRNA sequencing
MEASURING GENE EXPRESSION BY RNA SEQUENCING: PROS AND CONS

LIMITATIONS

- LOWER LIMIT OF DETECTION IS CONSTRAINED BY THE mRNA ABUNDANCE DISTRIBUTION AND THE NUMBER OF ALIGNED READS PER SAMPLE.
- LARGE SAMPLE NUMBERS DIFFICULT TO ACHIEVE, EXCEPT IN TAG MODE.
- SOFTWARE IS STILL DEVELOPMENTAL: REQUIRES SOPHISTICATED BIOINFORMATICS COLLABORATION. [For review see Pepke et al. Nat Methods 6:S22 (2009)]
- COMPUTATIONAL HARDWARE REQUIREMENTS ARE SUBSTANTIAL
- LIBRARY PREP METHODS EVOLVING
- DATA MAY NOT MERGE WELL IF NOT GENERATED WITH THE SAME METHOD

MEASURING GENE EXPRESSION BY RNA SEQUENCING

\[
mRNA \\
\text{5'} \rightarrow \text{3'}
\]

RANDOMLY FRAGMENTED RNA

CONVERT TO cDNA LIBRARY
RNASeq COMPUTATIONAL WORKFLOW

RAW READS

ALIGN

TO WHAT???

- GENOME?
- TRANSCRIPTOME?
- WHICH TRANSCRIPTOME? REFSEQ? EMBL? CUSTOM?
RNASeq COMPUTATIONAL WORKFLOW

RAW READS

ALIGN TO TRANSCRIPTOME

ALIGNED READS

NORMALIZED READ COUNT

UNALIGNED READS

EXON USAGE; TRANSCRIPTION START/STOP; STRUCTURAL VARIANTS; RNA EDITING; SNVs; ANITENSE; STRAND SPECIFICITY
RNASeq COMPUTATIONAL WORKFLOW

RAW READS

ALIGN TO TRANSCRIPTOME

ALIGNED READS

NORMALIZED READ COUNT

EXON USAGE; TRANSCRIPTION START/STOP; STRUCTURAL VARIANTS; RNA EDITING; SNVs; ANITSENSE; STRAND SPECIFICITY
MEASURING GENE EXPRESSION BY RNA SEQUENCING

Cloonan et al.

mRNA ABUNDANCE VARIES OVER A LARGE DYNAMIC RANGE

Sven Bilke
MEASURING GENE EXPRESSION BY RNA SEQUENCING

mRNA

\[\text{5' } A_n \]

\[\downarrow \]

RANDOMLY FRAGMENTED RNA

CONVERT TO cDNA AND SEQUENCE TAGS AT ENDS OF EACH cDNA FRAGMENT

\[\text{3' TAG SEQUENCING} \]

mRNA bound to beads

\[\text{5' } A_n \]

\[\downarrow \]

DS cDNA

\[\uparrow \text{ TAG CUT SITE} \]

DIGEST AND SEQUENCE

\[\text{TAGS FROM VARIOUS GENES} \]
3’ TAG SEQUENCING

- SEQUENCES ALIGNED AND COUNTED
- LIBRARIES OF TAGS FROM MANY SAMPLES CAN BE IDENTIFIED BY ADDING A “BARCODE” AND POOLED BEFORE SEQUENCING
- POTENTIAL TO ANALYZE LARGE NUMBERS OF SAMPLES IN PARALLEL

THE FUTURE?

AS SEQUENCE THROUGHPUT INCREASES AND COSTS PER READ DECLINE, SEQUENCING IS LIKELY TO BECOME AN ATTRACTIVE ALTERNATIVE TO MICROARRAYS IN MORE AND MORE APPLICATIONS.
<table>
<thead>
<tr>
<th>USEFUL WEB SITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGE GD The Microarray Gene Expression Data Society:</td>
</tr>
<tr>
<td>http://www.mged.org/</td>
</tr>
<tr>
<td>NCBI Gene Expression Omnibus:</td>
</tr>
<tr>
<td>http://ncbi.nlm.nih.gov/geo/</td>
</tr>
<tr>
<td>NCBI Sequence Read Archive (SRA):</td>
</tr>
<tr>
<td>EBI Microarray informatics:</td>
</tr>
<tr>
<td>http://www.ebi.ac.uk/microarray/index.html</td>
</tr>
<tr>
<td>Stanford Microarray Database:</td>
</tr>
<tr>
<td>http://smd.stanford.edu/</td>
</tr>
<tr>
<td>UCSF DeRisi lab:</td>
</tr>
<tr>
<td>http://derisilab.ucsf.edu/data/microarray/index.html</td>
</tr>
<tr>
<td>Broad Institute:</td>
</tr>
<tr>
<td>Gene Set Enrichment Analysis (GSEA)</td>
</tr>
<tr>
<td>http://www.broadinstitute.org/gsea/</td>
</tr>
<tr>
<td>Connectivity Map:</td>
</tr>
<tr>
<td>http://www.broadinstitute.org/cmap/</td>
</tr>
</tbody>
</table>