

Current Topics in Genome Analysis 2014

Julia Segre

No Relevant Financial Relationships with Commercial Interests

Why the Human Microbiome?

Each human cell has the same proteinencoding potential. Microbes are more diverse and dynamic than human genome.

Human Microbiome

Microbiome is totality of microbial community DNA

Microbial cells outnumber human cells

Many unknown functions of microbes

- Staphylococcus aureus

Not all microbes are bad:
Beneficial microbes perform functions
essential for human health

- -Vitamin synthesis
- -Digestion
- Education and activation of immune system
- Inhibition of skin colonization by pathogens

Many microbial-host and microbial-microbial interactions remain unknown

Elucidating the diversity of the human microbiome

- Traditional approaches rely on isolating bacteria in pure culture
- The majority of bacterial species do not grow in culture = "the great plate count anomaly"
- Culturing favors lab weeds--not necessarily the most dominant or influential species
- Excludes microbes that rely on community interactions

Topics for today's talk

- 1. Bacterial diversity studies: 16S rRNA
- 2. Fungal diversity studies: ITS1
- 3. Bacterial genomes: Shotgun sequencing
- 4. Metagenomics
- 5. Where is the technology going?

Important Issues to Consider Before Initiating Experiment

- 1. Study Design. Define the question as precisely as possible; e.g. 'I want to compare wild-type with knock-out mice.' → Are these mice littermates? Because there is a lot of variation between individuals, cages and facilities. What controls do you need?
- 2. What sequencing platform will you use?
- 3. What region of the 16S rRNA gene will you amplify?
- 4. How many reads do you need per sample?
- 5. What are hidden technical issues? CHIMERAS
- 6. What analysis tool will you use?
- 7. How will you display your data?
- 8. How will you compare your results with other published studies?
- 9. What information will yield a testable hypothesis?

13

Calculating Bacterial Load: qPCR with primers in conserved region of 16S rRNA gene

Human			Bacterial DNA			
DNA	300 pg		30 pg		3 pg	
	Ct	copy#	Ct	сору#	Ct	copy #
0 g	17.85	54924.50	20.92	6951.93	24.24	743.61
0.3 ng	17.78	57575.00	20.93	6905.28	24.42	658.74

 $C_{\rm t}$ of qPCR of bacterial DNA to calculate relative bacterial counts of each sampling method. Must also consider how to normalize sample. /cm² or /g stool?

- •Swab yields 10,000 bacteria/cm²
- •Scrape yields 50,000 bacteria/cm²
- •Biopsy yields 1,000,000 bacteria/cm²

Grice et al, Genome Research 2008 Castillo M...Gasa J...2006

DNA Sequencing to assess bacterial diversity

Illumina Mi-Seq (2 x 300 bp paired-end reads)

- 2 runs/week on one instrument.
- Costs \$2K, which is \$4/sample if you multiplex 500 samples.
- Scale is the issue. Need to dual-index bar-code primers for multiplexing since platform generates >10 million reads per lane. Assume 10,000 reads is more than enough per sample, you can multiplex 500+ samples together in one lane.

 Short reads, but can link paired reads. 	
Primer: 8F	505R prime

For a SMALL study, SEQUENCE is limiting; For a LARGE study, BIOINFORMATICS is limiting.

> Fadrosh DW...Ravel J Microbiome 2014; Kozich JJ....Schloss PD Appl Environ Microbiol 2013; Caporaso JG...Knight R ISME J 2012

Other means of sequence data acquisition

- 454 pyrosequencing (~500bp)
 - Limited to known taxa, but can get species-level designations
 - More expensive than Illumina.
 - Roche is no longer supporting this sequencing platform.

- Phylochip (16S rRNA microarray)
 - Limited to known taxa, but can get species-level designations
 - More expensive.

- Hi-Seq Illumina (2 x 100 bp paired-end reads)
- Production sequencing. High output mode (TruSeq v3 chemistry) runs for 10 days and produces 4 billion clusters.

Alignment & Classification

- · Reference-dependent
 - Ribosomal Database Project (RDP), SILVA, Greengenes
- But what about species?
 Amplify the appropriate region of 16S rRNA gene (V1-3 for Staphylococcus¹; or Lactobacillus²) and use custom database.
- Sequences with no reference? Not so many of those, might have to consider other explanations

¹Conlan, PLoS One 2012; ²Ravel PNAS 2011

Environmental Microbiology (2007)

RDP Database http://rdp.cme.msu.edu/

- RDP 10.18 consists of 920,643 aligned and annotated 16S rRNA sequences. Naïve Baysian classifier based on Bergey's taxonomy. (Note: other taxonomies such as Euzeby and NCBI exist).
- Tools: RDP classifier, Segmatch, Probematch

Chimeras: PCR generated (template switching) Evaluate Accuracy: - True Positives (TP): artificial chimeras flagged - False Positives (FP): reference (non-chimera) flagged

Comparing Bacterial Diversity: Community Membership & Structure

Grp A	Grp B			
60	50			
34	50			
2	0			
2	0			
2	0			
	Grp A 60 34 2 2			

Community
Membership
(Categories of fruit in common)
= 2/5= 0.4

Community
Structure
(Pieces of fruit in common)
= ~ 0.9

29

Community Membership:
Pups are most like their mothers

Animal Name Sex Genotype

M3-3 Female ob/+

M3-1 Male 1/+

M3-2 Male ob/-b

M1-1 Female ob/-b

M1-4 Female ob/-b

M2B-1 Male ob/-b

M2A-1 Female ob/-b

M2A-2 Male ob/-b

M2A-3 Female ob/-b

M2A-3 Female ob/-b

M2A-4 Female ob/-b

M2B-1 Male 1/+

M2B-3 Male ob/-b

M2B-1 Male 1/
M2B-1 Male 1/
M2B-1 Male 1/
M2B-1 Male 0b/-b

M2B-

Microbial community profiling for human microbiome projects: Tools, techniques, and challenges

Micah Hamady and Rob Knight

Genome Res. 2009 19: 1141-1152 originally published online April 21, 2009 Access the most recent version at doi:10.1101/gr.085464.108

Experimental and analytical tools for studying the human microbiome

Justin Kuczynski¹, Christian L. Lauber², William A. Walters¹, Laura Wegener Parfrey³, José C. Clemente³, Dirk Gevers⁴ and Rob Knight^{3,5}

TOPIC 3. BACTERIAL GENOME

- 1. What is study objective? E.g. Determine if two hospital isolates are clonal? Or Determine what genes are encoded by diverse set of Staphylococcus epidermidis?
- 2. What reference genomes exist for phylogenetic comparison?
- 3. What sequencing platform will you use?
- 4. What depth of sequencing do you need for assembly?
- 5. What assembly tool will you use? What alignment tool will you use?
- 6. How will you display your data?
- 7. How will you compare your results with other published studies?
- 8. What information will yield a testable hypothesis?

TOPIC 3. BACTERIAL GENOME How to Assemble a Bacterial Genome: Gram-negative is ~6,000,000 base pair

Shotgun sequence 2x300 bp fragments on Illumina MiSeq at 30-fold redundancy.

Overlapping reads form large DNA contigs with N50 of ~100 kb.

Or very low coverage (3-5X) just to define species and strain

Assemblers (de novo)

- mira
- Velvet
- SPAdes
- MaSuRCA
- SOAPdenovo2
- Newbler (454)
- ALL-PATHS, DISCOVAR

Hunt *et al. Genome Biology* 2014, **15**:R42 http://genomebiology.com/2014/15/3/R42

RESEARCH

Open Access

A comprehensive evaluation of assembly scaffolding tools

 $Martin\ Hunt^{1*},\ Chris\ Newbold^{2,1},\ Matthew\ Berriman^1\ and\ Thomas\ D\ Otto^1$

Velvet (Zerbino and Birney, 2008)

- Works in base-space and color-space
- Good for small genomes
- Agnostic of read length
- 1. Construct k-mer hash
- 2. Build De Bruijn graph
- 3. Simplify graph
- 4. Resolve
 - 1. Tips
 - 2. Bubbles

Evaluating Assemblies

- Coverage is a measure of how deeply a region has been sequenced
- The Lander-Waterman model predicts
 8-10 fold coverage is needed to minimze
 the number of contigs for a 1 Mbp genome
- The N50 size is the point at which 50% of bases are in contigs this size or greater

Genome Aligners: Compare sequences to identify sequence nucleotide variants, Insertion/Deletions

- 1. MumMER
- 2. MUGSY
- 3. MAUVE

Genome Annotation: Predicting and naming genes encoding proteins

- 1. PGAAP (NCBI)
- 2. IMG (JGI)
- 3. Glimmer, GeneMark

TOPIC 4. METAGENOMICS: DNA sequence from multiple organisms

Fungal, Bacterial, Viral, Archaeal DNA all together (with human DNA).

Very Complex mixture and very complex computationally.

Vol 455|25 September 2008

nature

MICROBIOLOGY

Metagenomics

Philip Hugenholtz and Gene W. Tyson

Ten years after the term metagenomics was coined, the approach continues to gather momentum. This culture-independent, molecular way of analysing environmental samples of cohabiting microbial populations has opened up fresh perspectives on microbiology.

57

Goals of whole genome shotgun metagenomic analysis

- 1. Want to know who's there & abundance
- 2. Want to know what they do (function)
 - Want to know what genes are present
 - Can we identify pathways
- 3. Can we recover genomes

Using metagenomic sequencing to find new metabolic enzymes

Nature. 2007 Nov 22;450(7169):560-5. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite.

Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011 Jan 28;331(6016):463-7

Looking for function

· Leverage functional databases like

 Generally, use blastx-like programs to map reads to these databases

eggNOG_{4.0}

Human DNA Admixture

- Important when dealing with humanderived samples
- Ethically, projects should attempt to filter human subject sequences before submission to public databases
- This is actually harder than it sounds

Topic 5: Where is sequencing technology going?

Now: Illumina MiSeq generates 2x300 bp paired end for amplicon and whole-genome sequencing. Costs ~\$100K Future: ? (REFERENCE GENOMES for hospital pathogens is my #1 priority; CLINICAL REPORTS from genomic sequence data is also my/#1 priority.

Sequencing is just the start... Koch's postulates

- The microorganism must be found in abundance in all organisms suffering from the disease, but should not be found in healthy animals.
- The microorganism must be isolated from a diseased organism and grown in pure culture.
- The cultured microorganism should cause disease when introduced into a healthy organism.
- The microorganism must be reisolated from the inoculated, diseased experimental host and identified as being identical to the original specific causative agent.