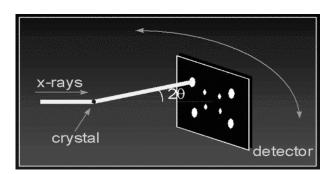
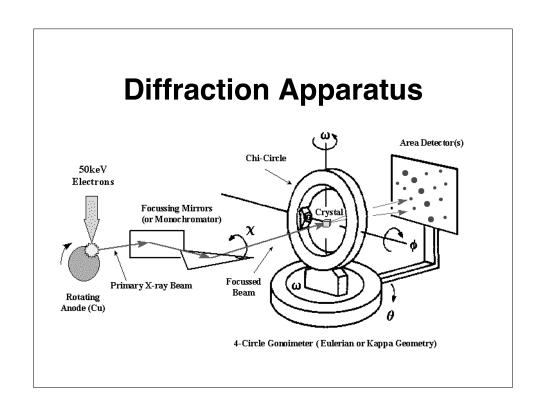

Protein Structure Analysis & Protein-Protein Interactions

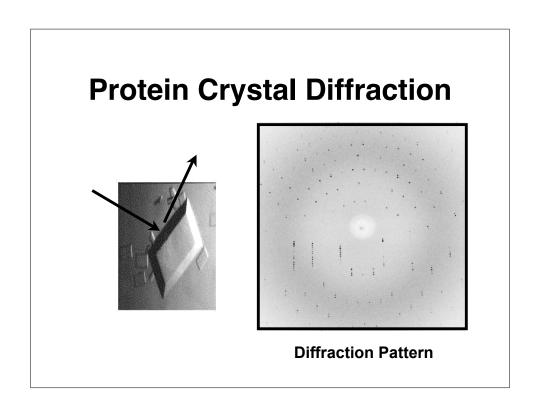
David Wishart
University of Alberta, Edmonton, Canada
david.wishart@ualberta.ca

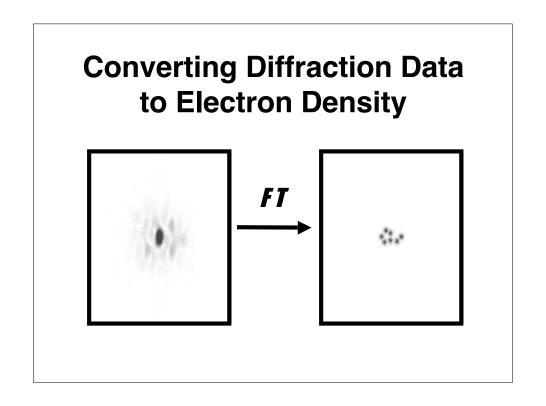

Much Ado About Structure

- Structure ←→ Function
- Structure → Mechanism
- Structure ←→ Origins/Evolution
- Structure-based Drug Design
- Solving the Protein Folding Problem

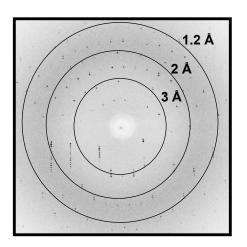
Routes to 3D Structure

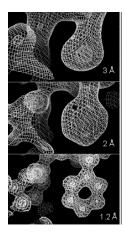

- X-ray Crystallography (the best)
- NMR Spectroscopy (close second)
- Cryoelectron microsocopy (distant 3rd)
- Homology Modelling (sometimes VG)
- Threading (sometimes VG)
- Ab initio prediction (getting better)


X-ray Crystallography

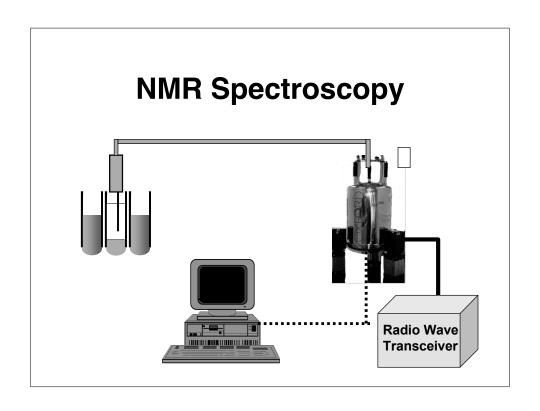


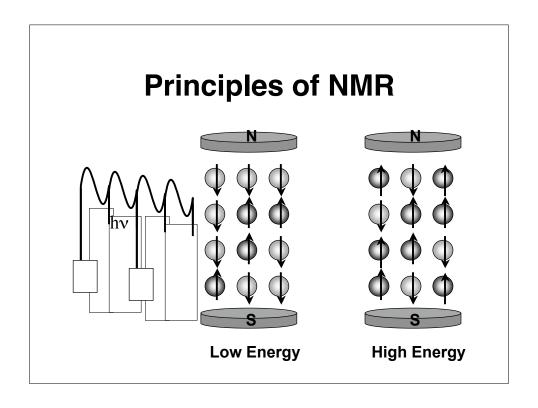
X-ray Crystallography

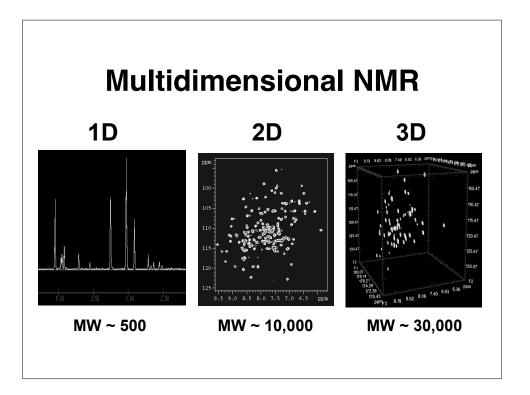

- Crystallization
- Diffraction Apparatus
- Diffraction Principles
- Conversion of Diffraction Data to Electron Density
- Resolution
- Chain Tracing



Resolution

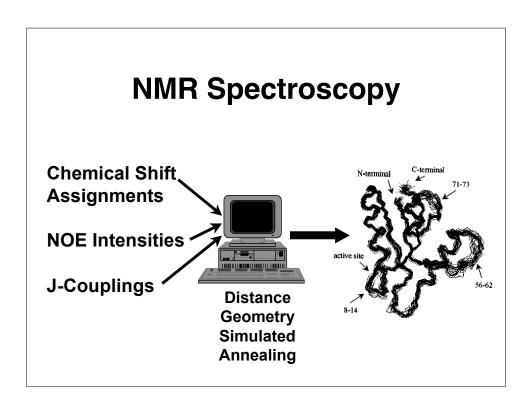





The Final Result

ORIGX2		0.00	0000	1	.000000	0.00000	0	0.00000			2TRX	147
ORIGX3		0.00	0000	0	.000000	1.00000	0	0.00000			2TRX	148
SCALE1		0.011173			.000000	0.004858		0.00000			2TRX	149
SCALE2		0.000000			.019585	0.000000		0.00000			2TRX	150
SCALE3		0.000000			.000000	0.01803	.018039				2TRX	151
ATOM	1	N	SER	Α	1	21.389	25.406	-4.628	1.00	23.22	2TRX	152
ATOM	2	CA	SER	Α	1	21.628	26.691	-3.983	1.00	24.42	2TRX	153
ATOM	3	C	SER	Α	1	20.937	26.944	-2.679	1.00	24.21	2TRX	154
ATOM	4	0	SER	Α	1	21.072	28.079	-2.093	1.00	24.97	2TRX	155
ATOM	5	CB	SER	Α	1	21.117	27.770	-5.002	1.00	28.27	2TRX	156
ATOM	6	OG	SER	Α	1	22.276	27.925	-5.861	1.00	32.61	2TRX	157
ATOM	7	N	ASP	Α	2	20.173	26.028	-2.163	1.00	21.39	2TRX	158
ATOM	8	CA	ASP	Α	2	19.395	26.125	-0.949	1.00	21.57	2TRX	159
ATOM	9	C	ASP	Α	2	20.264	26.214	0.297	1.00	20.89	2TRX	160
ATOM	10	0	ASP	Α	2	19.760	26.575	1.371	1.00	21.49	2TRX	161
ATOM	11	CB	ASP	Α	2	18.439	24.914	-0.856	1.00	22.14	2TRX	162

http://www-structure.llnl.gov/Xray/101index.html



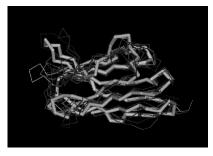
The NMR Process

- Obtain protein sequence
- Collect TOCSY & NOESY data
- Use chemical shift tables and known sequence to assign TOCSY spectrum
- Use TOCSY to assign NOESY spectrum
- Obtain inter and intra-residue distance information from NOESY data
- Feed data to computer to solve structure

The Final Result

ORIGX2		0.00	0000	1.	000000	0.00000	0	0.00000			2TRX	147
ORIGX3		0.00	0000	0.	000000	1.00000	0	0.00000			2TRX	148
SCALE1		0.01	1173	0.	000000	0.00485	8	0.00000			2TRX	149
SCALE2		0.00	0000	0.	019585	0.00000	0	0.00000			2TRX	150
SCALE3		0.00	0000	0.	000000	0.01803	9	0.00000			2TRX	151
ATOM	1	N	SER	Α	1	21.389	25.406	-4.628	1.00	23.22	2TRX	152
ATOM	2	CA	SER	Α	1	21.628	26.691	-3.983	1.00	24.42	2TRX	153
ATOM	3	C	SER	Α	1	20.937	26.944	-2.679	1.00	24.21	2TRX	154
ATOM	4	0	SER	Α	1	21.072	28.079	-2.093	1.00	24.97	2TRX	155
ATOM	5	CB	SER	Α	1	21.117	27.770	-5.002	1.00	28.27	2TRX	156
ATOM	6	OG	SER	Α	1	22.276	27.925	-5.861	1.00	32.61	2TRX	157
ATOM	7	N	ASP	Α	2	20.173	26.028	-2.163	1.00	21.39	2TRX	158
ATOM	8	CA	ASP	Α	2	19.395	26.125	-0.949	1.00	21.57	2TRX	159
ATOM	9	C	ASP	Α	2	20.264	26.214	0.297	1.00	20.89	2TRX	160
ATOM	10	0	ASP	Α	2	19.760	26.575	1.371	1.00	21.49	2TRX	161
ATOM	11	CB	ASP	Α	2	18.439	24.914	-0.856	1.00	22.14	2TRX	162

X-ray Versus NMR


X-ray

- Producing enough protein for trials
- Crystallization time and effort
- Crystal quality, stability and size control
- Finding isomorphous derivatives
- Chain tracing & checking

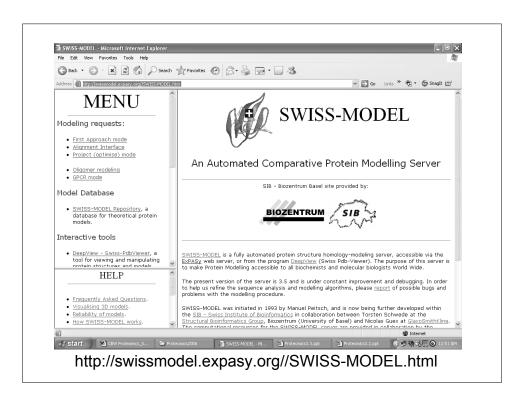
NMR

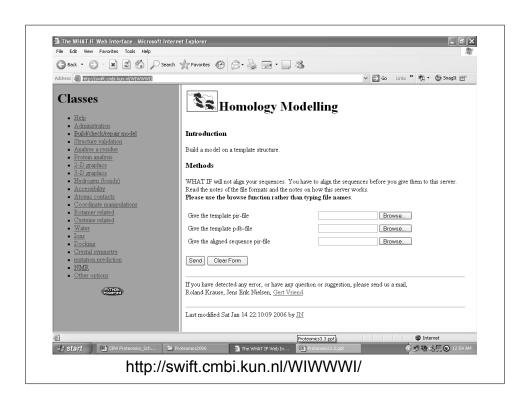
- Producing enough labeled protein for collection
- · Sample "conditioning"
- · Size of protein
- Assignment process is slow and error prone
- Measuring NOE's is slow and error prone

Comparative (Homology) Modelling

ACDEFGHIKLMNPQRST--FGHQWERT----TYREWYEGHADS ASDEYAHLRILDPQRSTVAYAYE--KSFAPPGSFKWEYEAHADS MCDEYAHIRLMNPERSTVAGGHQWERT----GSFKEWYAAHADD

Homology Modelling

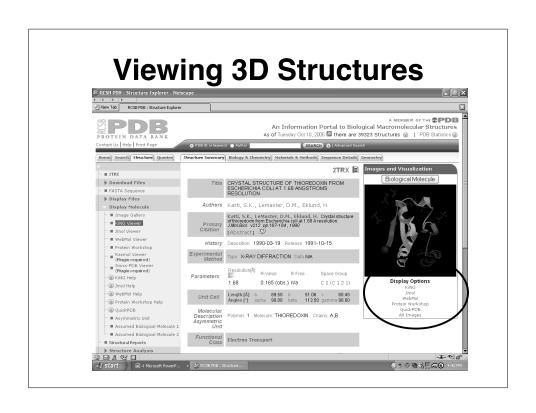

- Offers a method to "Predict" the 3D structure of proteins for which it is not possible to obtain X-ray or NMR data
- Can be used in understanding function, activity, specificity, etc.
- Of interest to drug companies wishing to do structure-aided drug design
- A keystone of Structural Proteomics

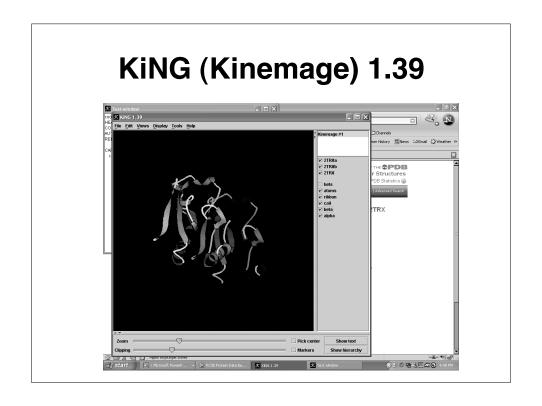

Homology Modelling

- Identify homologous sequences in PDB
- Align query sequence with homologues
- Find Structurally Conserved Regions (SCRs)
- Identify Structurally Variable Regions (SVRs)
- Generate coordinates for core region
- Generate coordinates for loops
- Add side chains (Check rotamer library)
- Refine structure using energy minimization
- Validate structure

Modelling on the Web

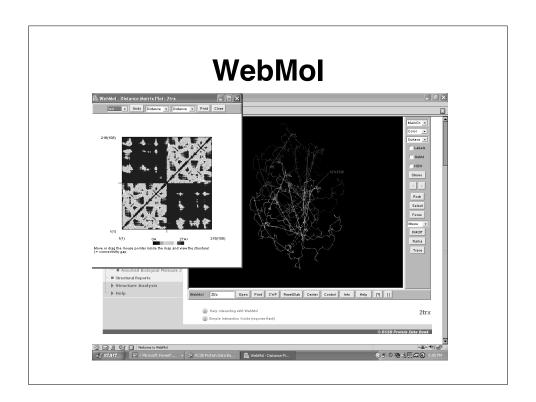
- Prior to 1998 homology modelling could only be done with commercial software or command-line freeware
- The process was time-consuming and labor-intensive
- The past few years has seen an explosion in automated web-based homology modelling servers
- Now anyone can homology model!




ORIGX2	0.000000 1			1.	.000000		0.000000			2TRX	147	
ORIGX3		0.00	0000		.000000	1.000000		0.00000	2TRX	148		
SCALE1		0.01			.000000	0.004858		0.00000	2TRX			
SCALE2		0.00			.019585	0.000000		0.00000			2TRX	
SCALE3		0.00	0000		.000000	0.01803		0.00000	2TRX			
ATOM	1	N	SER		1	21.389	25.406	-4.628		23.22	2TRX	
ATOM	2	CA	SER		1	21.628	26.691	-3.983		24.42	2TRX	
ATOM	3	C	SER		1	20.937	26.944	-2.679		24.21	2TRX	
ATOM	4	0	SER		1	21.072	28.079	-2.093		24.97	2TRX	
ATOM	5	CB	SER		1	21.117	27.770	-5.002		28.27	2TRX	
ATOM	6	OG	SER	Α	1	22.276	27.925	-5.861		32.61	2TRX	157
ATOM	7	N	ASP	Α	2	20.173	26.028	-2.163	1.00	21.39	2TRX	158
ATOM	8	CA	ASP	Α	2	19.395	26.125	-0.949	1.00	21.57	2TRX	159
ATOM	9	C	ASP	Α	2	20.264	26.214	0.297	1.00	20.89	2TRX	160
ATOM	10	0	ASP	Α	2	19.760	26.575	1.371		21.49	2TRX	161
ATOM	11	CB	ASP	Α	2	18.439	24.914	-0.856	1.00	22.14	2TRX	162

The PDB

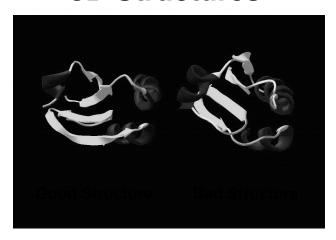
- PDB Protein Data Bank
- Established in 1971 at Brookhaven National Lab (7 structures)
- Primary archive for macromolecular structures (proteins, nucleic acids, carbohydrates – now 40,000 structrs)
- Moved from BNL to RCSB (Research Collaboratory for Structural Bioinformatics) in 1998


KiNG (Kinemage)

- Both a (signed) Java Applet and a downloadable application
- Application is compatible with most Operating systems
- Compatible with most Java (1.3+) enabled browsers including:
 - Internet Explorer (Win32)
 - Mozilla/Firefox (Win32, OSX, *nix)
 - Safari (Mac OS X) and Opera 7.5.4

JIMOI Applet SECS Protein Data Bank. Netscape J 1 1 2 New Tab. ROS Protein Data Bank. Netscape B CS Prot

JMol


- Java-based program
- Open source applet and application
 - Compatible with Linux, MacOS, Windows
- Menus access by clicking on Jmol icon on lower right corner of applet
- Supports all major web browsers
 - Internet Explorer (Win32)
 - Mozilla/Firefox (Win32, OSX, *nix)
 - Safari (Mac OS X) and Opera 7.5.4

WebMol

- Both a Java Applet and a downloadable application
- Offers many tools including distance, angle, dihedral angle measurements, detection of steric conflicts, interactive Ramachandran plot, diff. distance plot
- Compatible with most Java (1.3+) enabled browsers including:
 - Internet Explorer 6.0 on Windows XP
 - Safari on Mac OS 10.3.3
 - Mozilla 1.6 on Linux (Redhat 8.0)

Analyzing and Assessing 3D Structures

Why Assess Structure?

- A structure can (and often does) have mistakes
- A poor structure will lead to poor models of mechanism or relationship
- Unusual parts of a structure may indicate something important (or an error)

Famous "bad" structures

- Azobacter ferredoxin (wrong space group)
- · Zn-metallothionein (mistraced chain)
- Alpha bungarotoxin (poor stereochemistry)
- Yeast enolase (mistraced chain)
- Ras P21 oncogene (mistraced chain)
- Gene V protein (poor stereochemistry)

How to Assess Structure?

- Assess experimental fit (look at R factor {X-ray} or rmsd {NMR})
- Assess correctness of overall fold (look at disposition of hydrophobes, location of charged residues)
- Assess structure quality (packing, stereochemistry, bad contacts, etc.)

A Good Protein Structure...

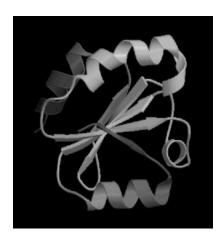
X-ray structure NMR structure

- R = 0.59 random chain
- rmsd = 4 Å random
- R = 0.45 initial structure rmsd = 2 Å initial fit
- R = 0.35 getting there rmsd = 1.5 Å OK
- R = 0.25 typical protein
 rmsd = 0.8 Å typical
- R = 0.15 best case
- rmsd = 0.4 Å best case
- R = 0.05 small molecule
 rmsd = 0.2 Å dream on

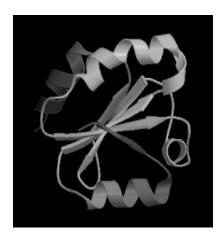
Cautions...

- A low R factor or a good RMSD value does not guarantee that the structure is "right"
- Differences due to crystallization conditions, crystal packing, solvent conditions, concentration effects, etc. can perturb structures substantially
- Long recognized need to find other ways to ID good structures from bad (not just assessing experimental fit)

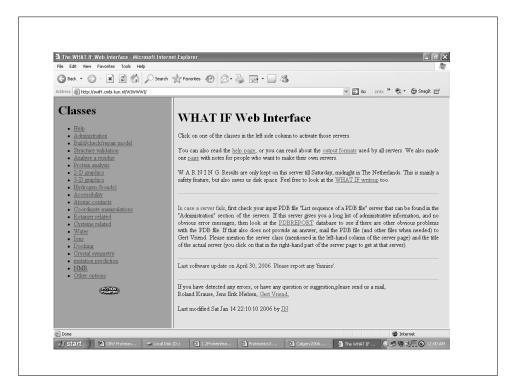
Structure Variability

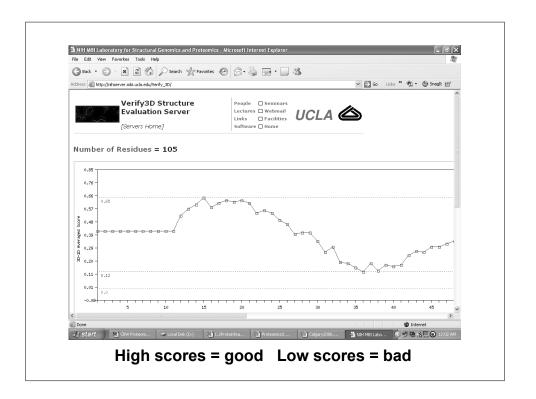

X-ray to X-ray Interleukin 1β (41bi vs 2mlb)

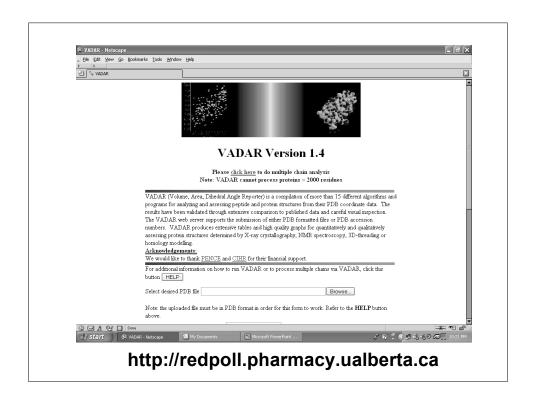
NMR to X-ray Erabutoxin (3ebx vs 1era)


A Good Protein Structure...

- Minimizes disallowed torsion angles
- Maximizes number of hydrogen bonds
- Maximizes buried hydrophobic ASA
- Maximizes exposed hydrophilic ASA
- Minimizes interstitial cavities or spaces

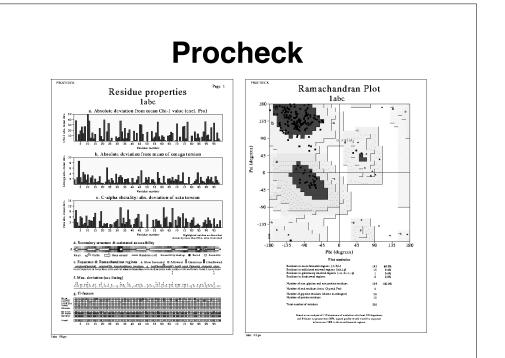

A Good Protein Structure..

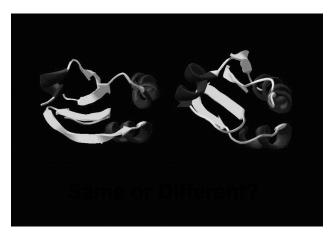

- Minimizes number of "bad" contacts
- Minimizes number of buried charges
- Minimizes radius of gyration
- Minimizes covalent and noncovalent (van der Waals and coulombic) energies



Structure Validation Servers

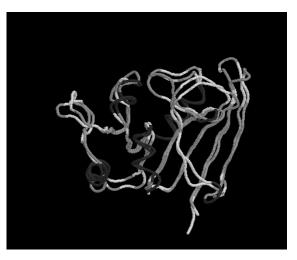
- WhatIf Web Server http://swift.cmbi.kun.nl/WIWWWI/
- Biotech Validation Suite http://biotech.ebi.ac.uk:8400/cgi-bin/sendquery
- Verify3D http://www.doe-mbi.ucla.edu/Services/Verify_3D/
- VADAR http://redpoll.pharmacy.ualberta.ca



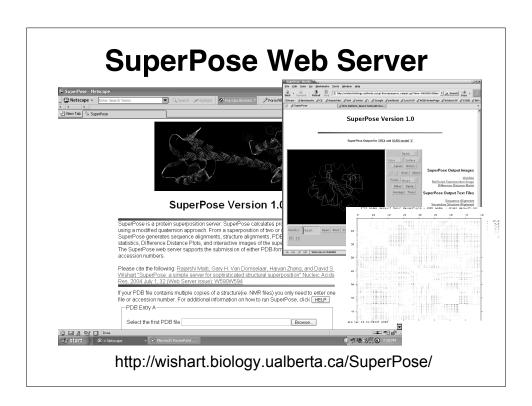


Structure Validation Programs

- PROCHECK http://www.biochem.ucl.ac.uk/~roman/procheck/procheck.html
- PROSA II http://lore.came.sbg.ac.at/People/mo/Prosa/prosa.html
- VADAR http://www.pence.ualberta.ca/ftp/vadar/
- DSSP http://www.embl-heidelberg.de/dssp/

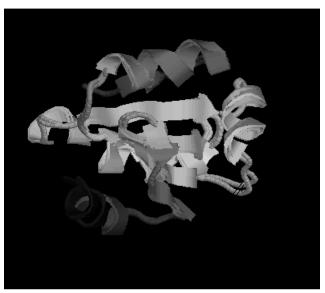


Comparing 3D Structures


Qualitative vs. Quantitative

Rigid Body Superposition

Superposition

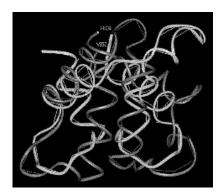

- Objective is to match or overlay 2 or more similar objects
- Requires use of translation and rotation operators (matrices/vectors)
- Least squares or conjugate gradient minimization (McLachlan/Kabsch)
- Lagrangian multipliers
- Quaternion-based methods (fastest)

Superposition - Applications

- Ideal for comparing or overlaying two or more protein structures
- Allows identification of structural homologues (CATH and SCOP)
- Allows loops to be inserted or replaced from loop libraries (comparative modelling)
- Allows side chains to be replaced or inserted with relative ease

Measuring Superpositions

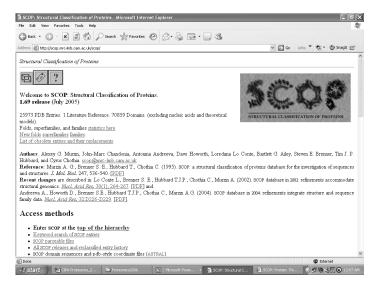
RMSD - Root Mean Square Deviation


- Method to quantify structural similarity same as standard deviation
- Requires 2 superimposed structures (designated here as "a" & "b")
- N = number of atoms being compared

RMSD =
$$\sqrt{\sum_{i} (x_{ai} - x_{bi})^{2} + (y_{ai} - y_{bi})^{2} + (z_{ai} - z_{bi})^{2}}$$

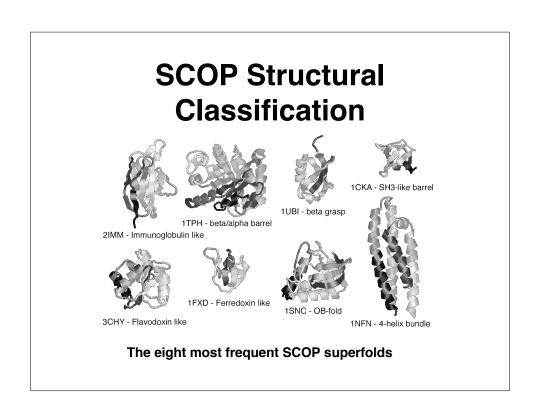
RMSD

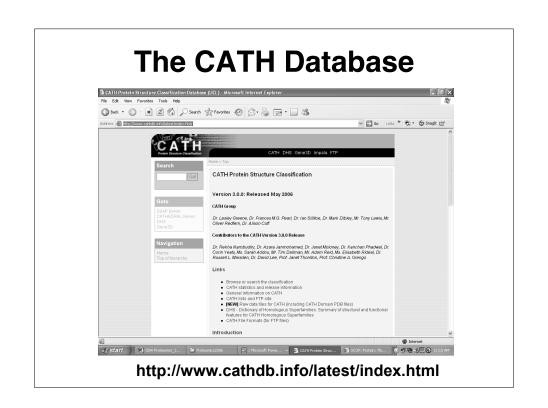
- 0.0-0.5 Å → Essentially Identical
- <1.5 Å → Very good fit
- < 5.0 Å → Moderately good fit
- 5.0-7.0 Å → Structurally related
- > 7.0 Å → Dubious relationship
- > 12.0 Å → Completely unrelated


Detecting Unusual Relationships

Similarity between Calmodulin and Acetylcholinesterase

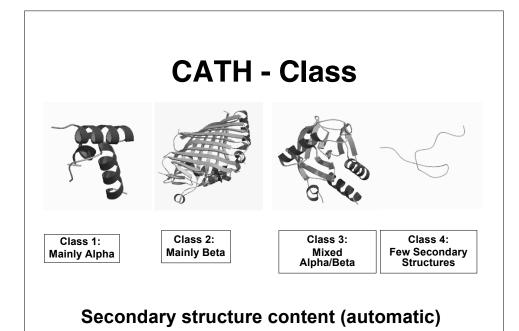
Classifying Protein Folds | Incourse | Section | Incourse | Incourse

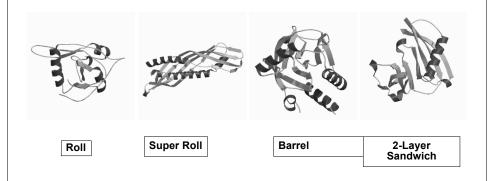

SCOP Database



http://scop.mrc-lmb.cam.ac.uk/scop

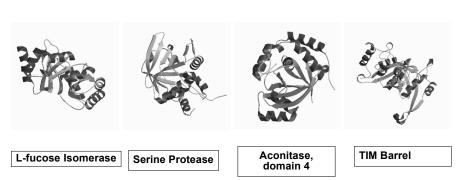
SCOP


- Class folding class derived from secondary structure content
- Fold derived from topological connection, orientation, arrangement and # 2° structures
- Superfamily clusters of low sequence
 ID but related structures & functions
- Family clusers of proteins with seq ID
 > 30% with v. similar struct. & function

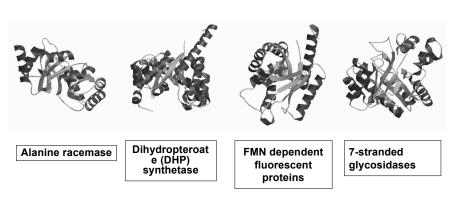


CATH

- Class [C] derived from secondary structure content (automatic)
- Architecture (A) derived from orientation of 2° structures (manual)
- Topology (T) derived from topological connection and # 2° structures
- Homologous Superfamily (H) clusters of similar structures & functions

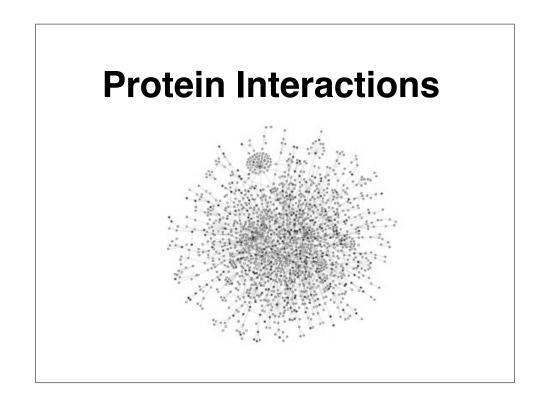


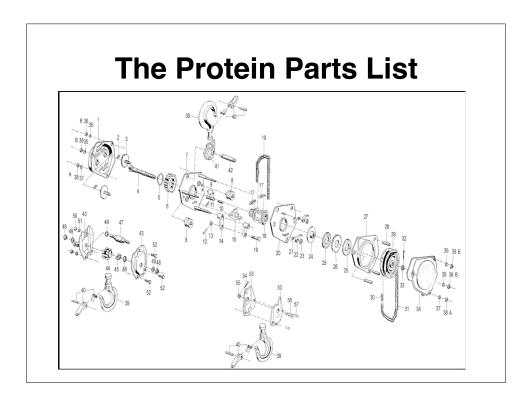
CATH - Architecture


Orientation of secondary structures (manual)

CATH - Topology

Topological connection and number of secondary structures

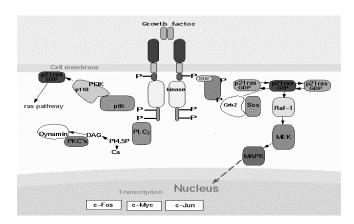

CATH - Homology

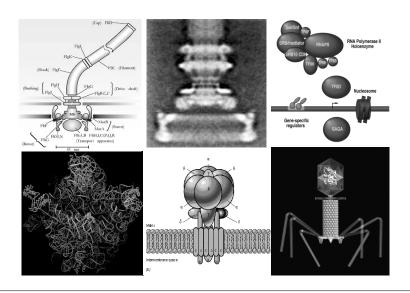


Superfamily clusters of similar structures & functions

Other Servers/Databases

- Dali http://www.ebi.ac.uk/dali/
- VAST www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml
- CE http://cl.sdsc.edu/ce.html
- FSSP http://www.ebi.ac.uk/dali/fssp/fssp.html
- PDBsum www.biochem.ucl.ac.uk/bsm/pdbsum/

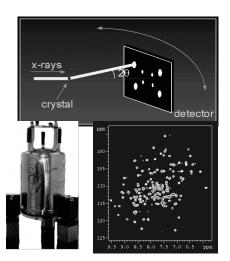



The Parts List

- Sequencing gives "serial number"
- Sequence alignment gives a name
- Microarrays give # of parts
- X-ray and NMR give a picture
- However, having a collection of parts and names doesn't tell you how to put something together or how things connect -- this is biology

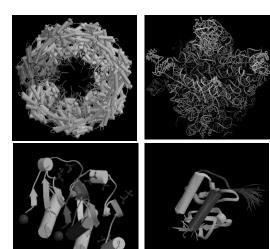
Remember: Proteins Interact

Proteins Assemble



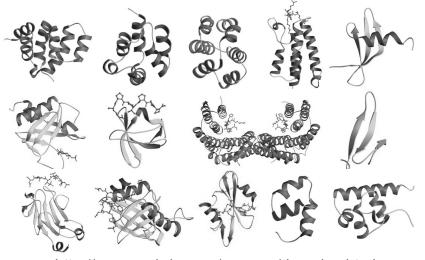
Types of Interactions

- Permanent (quaternary structure, formation of stable complexes)
- Transient (brief interactions, signaling events, pathways)
- About 1/4 to 1/3 of all proteins form complexes (dimers → multimers)
- Each protein may transiently interact with ~3 other proteins

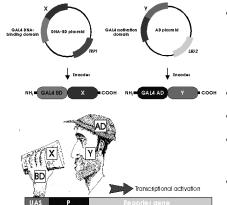

Protein Interaction Tools and Techniques - Experimental Methods

3D Structure Determination

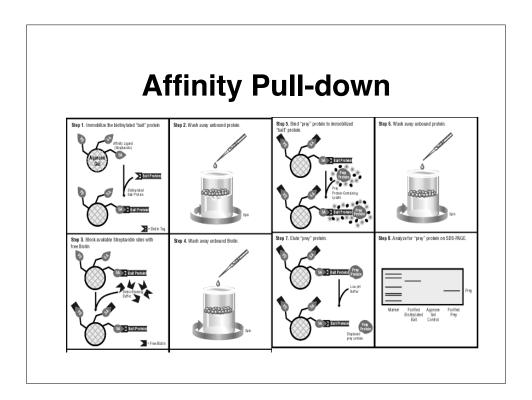
- X-ray crystallography
 - grow crystal
 - collect diffract, data
 - calculate e- density
 - trace chain
- NMR spectroscopy
 - label protein
 - collect NMR spectra
 - assign spectra & NOEs
 - calculate structure using distance geom.

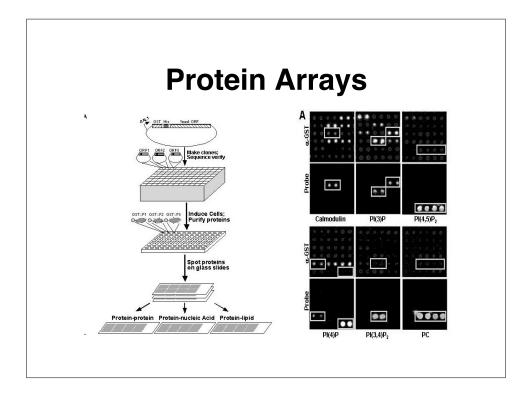

Quaternary Structure

Some interactions are real


Others are not

Protein Interaction Domains




http://www.mshri.on.ca/pawson/domains.html

Yeast Two-Hybrid Analysis

- Yeast two-hybrid experiments yield information on protein protein interactions
- GAL4 Binding Domain
- GAL4 Activation Domain
- X and Y are two proteins of interest
- If X & Y interact then reporter gene is expressed

A Flood of Data

- High throughput techniques are leading to more and more data on protein interactions
- Very high level of false positives need tools to sort and rationalize
- This is where bioinformatics can play a key role
- Some suggest that this is the "future" for bioinformatics

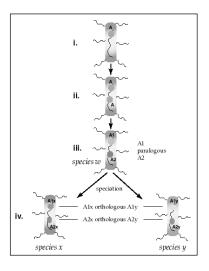
Interaction Databases

- BIND
 - http://www.bind.ca/
- DIP
 - http://dip.doe-mbi.ucla.edu/
- MINT
 - http://160.80.34.4/mint/
- IntAct
 - http://www.ebi.ac.uk/intact/in dex.jsp

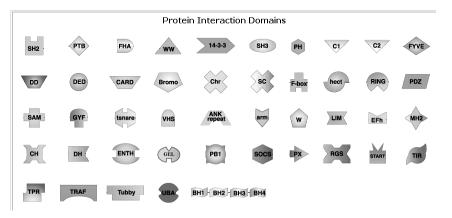
More Protein Interaction Databases http://www.hgmp.mrc.ac.uk/GenomeWeb/prot-interaction.html

Reliability of HT Interaction

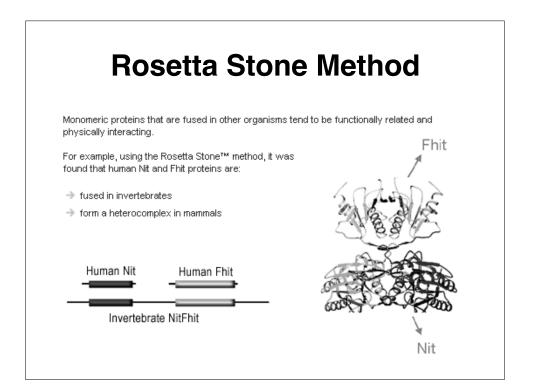
Data (Patil & Nakamura, BMC Bioinf. 6:100, 2005)


- Assessed reliability using known interacting Pfam domains, Gene Ontology annotations and sequence homology
- 56% of HT data for yeast are reliable
- 27% of HT data for C. elegans are reliable
- 18% of HT data for D. melanogaster are reliable
- 68% of HT data for H. sapiens are reliable

Protein Interaction Tools and Techniques -**Computational Methods**

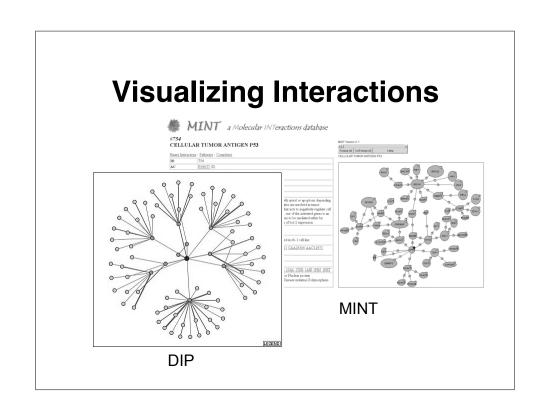

Interologs, Homologs, Paralogs...

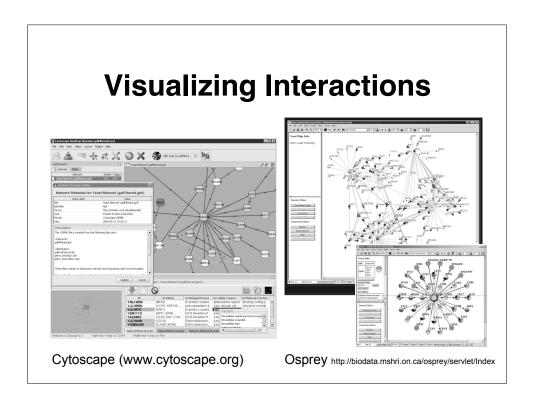
- Homolog
 - Common Ancestors
 - Common 3D Structure
 - Common Active Sites
- Ortholog
 - Derived from Speciation
- Paralog
 - Derived from Duplication


- Interolog
 - Protein-Protein Interaction

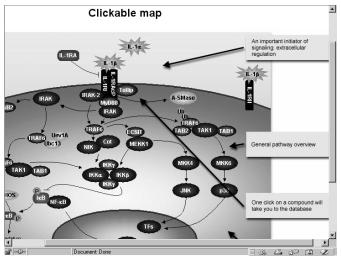
Sequence Searching Against Known Domains

http://www.mshri.on.ca/pawson/domains.html

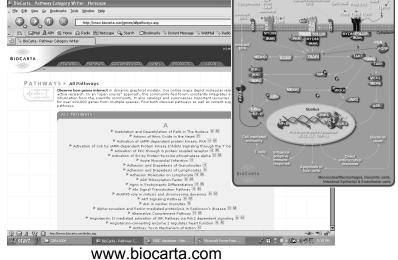

Text Mining


- Searching Medline or Pubmed for words or word combinations
- "X binds to Y"; "X interacts with Y";
 "X associates with Y" etc. etc.
- Requires a list of known gene names or protein names for a given organism (a protein/gene thesaurus)

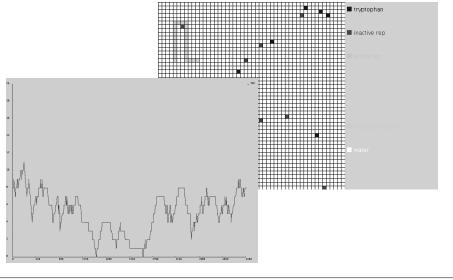
iHOP (Information hyperlinked over proteins)



http://www.ihop-net.org/UniPub/iHOP/



Pathway Visualization with TRANSPATH


http://www.biobase.de/pages/products/transpath.html

Pathway Visualization with BioCarta Sillocarta-Pathway Category Writer Netscape Sillocarta-Pathway Category W

47

Summary

- First application of bioinformatics was probably in protein structure (the PDB)
- Structural biology continues to be a rich source for bioinformatics innovation and bioinformaticians
- Next "big" step in bioinformatics is to go from the "parts list" to figuring out how to put it all together