Strategies for finding disease genes

Dennis Drayna, PhD

Current Topics in Genome Analysis Spring, 2008

Purpose of the Genome Project

- Develop technologies
- Understand human biology
- Understand evolutionary human history
- Improve human health

Human Disease - Is it genetic? Nature vs. nurture

- Many diseases (and other traits) run in families
- How do we determine the origin of such traits?

Concept of heritability

- h² The fraction of variance due to genetic factors
- Ranges from 0 to 1
- Is distinguished from unique environment, common environment
 - Includes things as diverse as diet, education, geographic location

Estimating heritability

- Adoption studies
 - Open vs. closed adoption records
 - · Scandinavia vs. U.S. vs. rest of the world
 - One-sided vs. two-sided analyses
 - Adoptive parents adopted children
 - Biological parents adopted children
 - Biological parents biological children

Estimating heritability

- Segregation analysis
 - Compare occurrence in families to expected patterns under Mendelian models
 - Can provide support for mode of inheritance
 - Can make estimates of single major gene effects
 - Requires a large group of randomly ascertained families with the disorder

Estimating heritability

- Family studies
 - Estimate based on degree of genotype and phenotype sharing
 - First-degree relatives share half their genes
 - Second degree relatives share 1/4 of their genes

Estimating heritability

- · Twin studies
 - Many study designs
 - Currently popular
 - Large twin cohorts developed
 - Twin Research Unit, St. Thomas' Hospital
 - FinnTwin
 - Others
 - Well-developed analytical methods
 - · Structural equation modeling
 - · Successive best-fit methods

Twin Studies

- Existing resources
 - Twin cohorts
 - Twinsburg, Ohio Twins Festival
 - Held annually in August
 - > 2000 pairs of twins attend
 - Research-friendly administration and environment

Heritability estimates from twin studies

- Stature (height)
- Psychiatric diseases
- · Bone mass density
- Plasma cholesterol level
- Salt taste sensitivity
- Religiosity
- Social attitudes

Highest heritabilities

- · Are observed for Mendelian disorders
- Even in Mendelian disorders, uncertainties arise from:
 - Reduced penetrance
 - · Have the disease genotype but not the disease
 - Variable expressivity
 - · Severe vs. mild (sometimes subtle) disease
 - Locus heterogeneity
 - Mutations in genes at more than one locus cause same disease
 - Allelic heterogeneity
 - Different mutations in the same gene cause different symptoms, or even different diseases

Mendelian Disorders

- · An early confirmation of Mendel
 - Garrod alkaptonuria
- Are typically considered rare by physicians
 10⁻⁶
- But, can amount to a significant number of patients
 - >20,000 patients with Huntington Disease
- · Traditionally a focus of pediatrics

Finding Mendelian disease genes

- Brought human genetics into the molecular realm - 1980s - 1990s
- The genes underlying the common Mendelian disorders now known
- Relied on Positional Cloning

Positional Cloning

- The ability to identify a gene causing a trait based solely on its position in the genome
- Information about the biochemistry, physiology, or pathology not required
- Agnostic regarding disease mechanism

The positional cloning process

- 1. Establish linkage to a marker at a known location
- 2. Search the linked region to identify all resident genes
- 3. Examine each of these genes to identify causative mutation(s)

Positional cloning shortcut

- Identify a cytogenetic abnormality associated with the disorder
 - Often very rare
- The disorder of interest can be present as part of a syndrome
- Test DNA probes (now DNA microarrays) across region of the abnormality to identify rearrangement in affected, but not in unaffected, individuals

1. Finding linkage

- Performed in families in which the disease is segregating
- Linkage occurs because the genes encoding the two traits reside in close proximity to each other
 - Based on violations of Mendel's Second Law (independent assortment)
- Uses genetic markers of known location
 - The phenotype used is naturally-occurring inherited variation in DNA sequence itself
 - Markers assembled into panels that optimize efficiency in the lab and in subsequent analysis

Getting started

- Assemble families
 - 10¹ 10² individuals required
 - Obtain DNA blood is traditional source, other sources gaining popularity
 - How much of the DNA is human?
 - Obtain clear, consistent, detailed phenotype information
 - Ongoing contact with families is essential

DNA-based genetic markers

- · simple sequence repeats
 - Di-, tri-, and tetra-nucleotide repeats
 - differences based on length across repeat
 - $\ gttatcttagagctcagt \underline{cacacacacacacacacacacacacaca} tccaggtattggatcaact$
 - single copy
 variable repeat
 single copy
 - Linkage panel contains ~400 markers
- SNPs single nucleotide polymorphisms
 - ggattacctgaccctgAccgcttaatcattgatt
 - ggattacctgaccctgGccgcttaatcattgatt
 - Linkage panel contains 5,000-10,000 markers

Genotype individuals

Microsatellites

- Assayed by PCR followed by gel electrophoresis
 - · Weber Marshfield panels
- Utilizes same instruments as DNA sequencing
- Many alleles at each locus highly informative

SNPs

- Non-electrophoretic methods
 - · Affymetrix, Illumina, Sequenom
- Hybridization-based
- Genotypes at many SNP sites gathered simultaneously
- Only 2 alleles at each locus often uninformative

Analyze data for linkage

Parametric methods

- LOD score method
 - Maximum likelihood estimation
 - · used for Mendelian traits
 - <u>L</u>ogarithm of the <u>od</u>ds that: markers are linked, at a particular distance (θ) , divided by the odds that they're linked at 50% co-inheritance, i.e., they're not linked at all
 - Classic LINKAGE package MLINK, ILINK

LOD scores

- · Historically defined
 - LOD of 1 = suggestive
 - LOD of 2 = probable
 - LOD of 3 = proof
- Each non-recombinant informative meiosis (= parent to offspring co-inheritance) contributes a LOD score of + 0.3
- LOD scores can also be negative, indicating a lack of linkage
 - LOD of (-) 2 is accepted as proof of non-linkage

Non-parametric methods

- Used for non-Mendelian traits
- Evaluate deviations from expected degree of allele-sharing in affected family members
- Typically applied to a large collection of affected relative pairs
- Support for linkage reported as p-values, NPL values, others
- · GENEHUNTER, Allegro, Merlin, others

2. Search the linked region to identify all resident genes

www.ncbi.nih.gov

- NCBI (UCSC Genome Browser)
- ENCODE
- Large-scale genomic re-sequencing of target region

3. Examine each of these genes to identify causative mutation(s)

- Perform DNA sequencing to identify mutations which exist in affected individuals but not in normal individuals
- Gold standard proof:
 - No mutations in that gene observed in normal individuals
 - Different mutations observed in the same gene in different families with the same disease

Perspective

- The surprises causative gene for many disorders was completely new...
 - Polycystic Kidney Disease
- · Or completely unexpected
 - Hemochromatosis
- Take-home lesson: assigning genes as candidates based on knowledge of the biology of their gene products is of limited value

Does linkage have a future?

- All the common Caucasian Mendelian disease genes have now been identified
 - Cystic fibrosis, hemochromatosis, Muscular dystrophy, neurofibromatosis
- But, the genes for a very large number of rare disorders remain unidentified
 - The genes underlying less than half of the known Mendelian disorders in humans have been found
 - "Niche disorders" although medically rare, can provide important insights into biology, both normal and pathologic
 - Deafness, Familial Mediterranean Fever

Linkage

- Very good at finding variant genes:
 - that have large effects
 - that show Mendelian inheritance
 - that contain mutations that are rare in the normal population

But, linkage has limitations

- From the perspective of clinical medicine, Mendelian disorders are not a significant portion of the total disease burden in the population
- Linkage has been spectacularly <u>un</u>successful at identifying genes containing mutations that:
 - Confer small or moderate effects
 - Are common in the population
- These are the genes that underlie the important common diseases
 - Psychiatric disease
 - Metabolic disease
 - Cardiovascular disease

The current goal

 To realize the ultimate promise of the Genome Project, which is to help solve common diseases

A possible solution?

- Copy number variation (CNV)
- Approximately 10% of the genome exists in different copy number in different individuals
- CNV was invisible to traditional candidate gene evaluation methods
- Many efforts to examine the role of CNV in human disease currently underway

The more promising solution

- Association studies
- Shown to have theoretically greater power to detect disease genes when they:
 - Exert small effects
 - Are common in the population

Association studies

- Typically case-control design
 - Long history of use in medical research
- · Typically enroll large numbers of subjects
 - $-10^3 10^4$
- Typically employ measurement of association at a large number of (SNP) loci
 - $-10^5 10^6$
 - Enabled by recent new technologies

Issues with association studies

- Studies are finding small risk factors
- Importance of a variant that explains 1% of the disorder - diabetes and the insulin gene
- · Relative risk vs. population attributable risk
 - Individual risk may double, but the variant may account for only 2% of the risk in the population
 - "little diagnostic and no prognostic value"
- · Requires shared ancestral variant
 - Recurrent mutation in the same gene will obliterate any association with neighboring SNPs
 - · Would fail for achondroplasia, hemophilia