# LARGE SCALE ANALYSIS OF GENE EXPRESSION

**Evolution and Revolution** 

AFTER THE SEQUENCE:
WHOLE GENOME APPROACHES TO
BIOLOGICAL QUESTIONS

GENE EXPRESSION

GENE VARIATION

GENE FUNCTION

## MICROARRAYS PROVIDE A TOOL FOR WHOLE GENOME ANALYSIS

# PRIMARY IMPACT: ACCELERATED DISCOVERY AND HYPOTHESIS GENERATION







#### **MICROARRAY TERMINOLOGY**

- · Feature--an array element
- Probe--a feature corresponding to a defined sequence
- Target--a pool of nucleic acids of unknown sequence

#### **POSSIBLE ARRAY FEATURES**

- Synthetic Oligonucleotides
- PCR products from Cloned DNAs Genomic DNA

  - Cloned DNA

#### **OLIGONUCLEOTIDE ARRAY DESIGN**

- Extremely flexible
  - · 3' bias
  - · full length
  - exon specific
  - candidate transcripts
  - miRNAs
- Very high density possible
- Requires sequence data

### **Microarray Manufacture**

Printing





## **Microarray Manufacture**

- Printing
- Synthesis in situ

  light directed

  mechanically directed









#### **MICROARRAY READOUT**

- Determine quantity of target bound to each probe in a complex hybridization
- Must have high sensitivity, low background
- ·High spatial resolution essential
- Dual channel capability useful
- Fluorescent tags meet these demands

### **Building Microarrays**

- Methods are applicable to any organism
- Sequenced organisms: oligonucleotides
- Unsequenced organisms: cloned DNAs

### **Building Microarrays**

- Density depends on specific technology
- Pin printing based methods limited to 40-50K
  - In situ synthesis: millions
  - Array design is linked to purpose.

### **Laboratory Essentials**

- Arrays
- Scanner
- Software for processing array image
  - Software for data analysis and display
    - Bioinformatics collaborator

#### **DNA Microarray Applications**

- Gene Expression
- Comparative Genomic Hybridization
  - Resequencing (SNPs)
- Transcription factor localization
- Chromatin/DNA modification

#### **Gene Expression Profiling Technologies**

- cDNA library sequencing
- Serial analysis of gene expression (SAGE)
- MPSS (massively parallel signature sequencing)
  - Microarray hybridization



Reports on Microarray Data Quality

Nature Biotechnology

September 2006





#### **Publishing Expression Data**

•MIAME standard

Minimum Information about a Microarray Experiment

- Format required by many journals
- Essential for database submissions

http://www.mged.org/Workgroups/MIAME/miame.html

## STRATEGIES FOR SIGNAL GENERATION FROM mRNA

- Fluorochrome conjugated cDNA
- Ligand substituted nucleotides with secondary detection (e.g. biotin-streptavidin)
- Radioactivity
- RNA amplification





#### **Output of Microarray Analysis:**

expression ratio (2 color hybridization)

or

relative expression level (1 color hybridization)

Both types of data can be analyzed with essentially the same tools.

## APPLICATIONS OF EXPRESSION ARRAYS

Expression profiling

Power arises from increasing sample number

Direct comparisons (Induction)

**Biological system critical** 

Genome Annotation

#### A RECURRING PROBLEM **Disease Genes Transcription** factors **Downstream** Genes Hormones/growth factors Direct targets **Drugs** Indirect targets **Toxins** Infectious agents **Physical agents** siRNA's

#### **EXPRESSION DATA ANALYSIS**

·Large amount of data

Examples: 200 samples x 25000 probes= 5,000,000 data points

Requires analysis and visualization tools

Recent overview of microarray bioinformatics: Simon R, Curr Opin Biotechnol. 2008 Feb;19(1):26-9.

#### **EXPRESSION DATA ANALYSIS**

Check quality of individual experiments

#### Preprocessing

**Normalization** 

Remove genes which are not accurately measured

Remove genes which are similarly expressed in all samples

- Unsupervised Clustering
  - Supervised Clustering

#### **Unsupervised Clustering**

How do genes and samples organize into groups?

Powerful method of data display.

Does not prove the validity of groups.

- Clustered Samples Are Biologically Similar
  - Clusters of Co-expressed genes
    - May be functionally related
    - May be enriched for pathways















### **Supervised Clustering**

What genes distinguish samples in selected groups from each other?

- Choice of groups can be based on any known property of the samples.
  - Many possible underlying methods: t-test or F-statistic frequently used.
    - Output includes ranked gene list.
- Leads to the development of classifiers which can be applied to unknown samples.
- Must address the problem of false discovery due to multiple comparisons and discrepancy between sample/gene numbers.









## SIGNAL STRENGTH VARIES IN TISSUE PROFILING EXPERIMENTS

THE MOST INTERESTING QUESTIONS
TEND TO BE ASSOCIATED WITH
WEAKER SIGNAL.













## WE CAN TELL APPLES FROM ORANGES.

CAN WE DISTINGUISH DIFFERENT KINDS OF APPLES?

## A CONTINUUM OF POSSIBLE OUTCOMES FROM MICROARRAY RESEARCH

- SOME FEATURES WILL SEPARATE TUMORS EASILY INTO CLASSES, AND MIGHT BE REDUCED TO SINGLE GENE TESTS, IMPLEMENTED IN A CONVENTIONAL FASHION.
- OTHERS WILL BE MORE DIFFICULT, AND REQUIRE MULTIPLE GENE MEASUREMENTS.
- MANY CLINICALLY RELEVANT FEATURES APPEAR TO FALL WITHIN THIS DIFFICULT GROUP.

## A CONTINUUM OF POSSIBLE OUTCOMES FROM MICROARRAY RESEARCH

- SOME GENES WILL SHOW DIFFERENCES BETWEEN GROUPS OF SAMPLES BY CHANCE ALONE.
- THERE MAY BE NO ONE GENE WHICH SEPARATES GROUPS RELIABLY.
- FIND THE MOST INFORMATIVE GENES AND USE THEM IN COMBINATION .

## RISK OF OVERFITTING IN CLINICAL STUDIES WITH SMALL SAMPLE SETS

NEED INDEPENDENT VALIDATION SETS.

## MICROARRAY STUDIES GENERATE ORGANIZED LIST OF GENES

- Often cryptic and hard to interpret.
- Hypothesis generating, but this is often rather subjective.
- Seldom provide strong evidence for a specific mechanism.
- Expression data is intrinsically limited.

#### **GETTING BEYOND GENE LISTS**

- Optimal use of gene annotations.
  - Gene Ontology

(http://david.abcc.ncifcrf.gov/)

- Optimizing use of public data.
  - · GEO, ARRAY EXPRESS, ACADEMIC DATA
  - GENE SIGNATURE BASED METHODS (Gene Set Enrichment Analysis).



#### **GETTING BEYOND GENE LISTS**

- Incorporating data from model systems.
  - Linking expression data to sequence (e.g. Regulatory elements).
- Integrating other types of genome scale data.



## WHAT TO LOOK FOR IN CLINICAL CORRELATIVE STUDIES USING MICROARRAYS

- WELL DEFINED QUESTION AND PATIENT SAMPLE.
- HIGH QUALITY ARRAY MEASUREMENTS (HARD TO ASSESS WITHOUT REFERENCE TO PRIMARY DATA---SHOULD BE MADE PUBLIC).
- APPROPRIATE AND RIGOROUS STATISTICAL ANALYSIS OF ARRAY DATA.
- FORMAL CLASSIFIER THAT CAN BE APPLIED TO NEW SAMPLES.
- VALIDATION SAMPLE SET.

## WHAT TO LOOK FOR IN CLINICAL CORRELATIVE STUDIES USING MICROARRAYS

• GOAL SHOULD BE TO SEEK AND VALIDATE CLINICALLY RELEVANT SIGNATURES WITHIN DEFINED PATIENT GROUPS FOR WHICH NO CURRENT FEATURES ADEQUATELY ANSWER THE CLINICAL QUESTION POSED.

#### **EXPRESSION PROFILING IN THE CLINIC?**

#### **PROBLEMS:**

- SPECIALIZED TECHNOLOGY
- RNA IS UNSTABLE
- FROZEN TISSUE NOT PART OF USUAL OR SAMPLE FLOW

#### **EXPRESSION PROFILING IN THE CLINIC?**

#### **OPTIONS:**

- REFERENCE LABORATORIES
- RNA PRESERVATIVES
- USE OF PARAFFIN EMBEDDED MATERIALS.

#### **EXPRESSION PROFILING IN THE CLINIC?**

- COMMERCIAL TESTS BEGINNING TO APPEAR.
- FDA IS ADDRESSING MULTIPLEX GENE EXPRESSION TESTS.
- LIMITED CLINICAL VALIDATION SO FAR



#### ARRAYS VS. NEXT GENERATION SEQUENCING

• ARRAY TECHNOLOGIES MEASURE THE RELATIVE ABUNDANCE OF NUCLEIC ACIDS OF DEFINED SEQUENCE IN A COMPLEX MIXTURE.

• SEQUENCING CAN ACCOMPLISH THE SAME THING.

#### **ARRAYS VS. NEXT GENERATION SEQUENCING**

#### **MICROARRAYS**

- READILY AVAILABLE MATURE TECHNOLOGY
- RELATIVELY INEXPENSIVE
- EFFECTIVE WITH VERY COMPLEX SAMPLES
- HUNDREDS OF SAMPLES PRACTICAL
- CAN TARGET SUBSET OF GENOME

### PROS

- REQUIRE PLATFORM AND APPLICATION SPECIFIC DATA PROCESSING
- PRONE TO PLATFORM SPECIFIC ARTIFACTS
- MANY SOURCES OF NOISE
- WHOLE GENOME STUDIES GENERALLY REQUIRE MANY ARRAYS, INCREASING SAMPLE REQUIREMENTS AND COMPLICATING ANALYSIS

#### **SEQUENCING**

- WHOLE GENOME DATA
- RELATIVELY UNIFORM ANALYTICALPIPELINE
- FREE OF HYBRIDIZATION ARTIFACTS
- POSSIBILITY OF ONE PLATFORM FOR ALL APPLICATIONS

#### • IMMATURE TECHNOLOGY

- HIGH COSTS
- COMPUTATIONALLY INTENSIVE
- LIMITED SAMPLE THROUGHPUT

#### **MICROARRAYS**

#### **SEQUENCING**

## MEASURING GENE EXPRESSION BY RNA SEQUENCING

- TAG SEQUENCING (SAGE-LIKE)
- FULL LENGTH mRNA----RNA-Seq
- 3' fragment mRNA sequencing
- miRNA sequencing





## MEASURING GENE EXPRESSION BY RNA SEQUENCING: PROS AND CONS

#### **ADVANTAGES**

- RNA SEQUENCE VARIATIONS DETECTED AT SINGLE NUCLEOTIDE RESOLUTION
  - -ALLELE SPECIFIC EXPRESSION -MUTATIONS
- RNA STRUCTURE: SPLICING, START SITES, TERMINATION SITES; REARRANGEMENTS
- DETECTED SIGNALS ARE RELATIVELY UNAMBIGUOUS; POTENTIAL TO OUTPERFORM MICROARRAY
- DE NOVO ASSEMBLY IS POSSIBLE



### MEASURING GENE EXPRESSION BY RNA SEQUENCING: PROS AND CONS

#### **LIMITATIONS**

- LOWER LIMIT OF DETECTION IS CONSTRAINED BY THE MRNA ABUNDANCE DISTRIBUTION AND THE NUMBER OF ALIGNED READS PER SAMPLE.
- LARGE SAMPLE NUMBERS DIFFICULT TO ACHIEVE, EXCEPT IN TAG MODE.
- SOFTWARE IS STILL DEVELOPMENTAL: REQUIRES SOPHISTICATED BIOINFORMATICS COLLABORATION. [For review see Pepke et al. Nat Methods 6:S22 (2009)]







#### 3' TAG SEQUENCING

- SEQUENCES ALIGNED AND COUNTED
- LIBRARIES OF TAGS FROM MANY SAMPLES CAN BE IDENTIFIED BY ADDING A "BARCODE" AND POOLED BEFORE SEQUENCING
- POTENTIAL TO ANALYZE LARGE NUMBERS OF SAMPLES IN PARALLEL

#### THE FUTURE?

AS SEQUENCE THROUGHPUT INCREASES AND COSTS PER READ DECLINE, SEQUENCING IS LIKELY TO BECOME AN ATTRACTIVE ALTERNATIVE TO MICROARRAYS IN MORE AND MORE APPLICATIONS.

#### **USEFUL WEB SITES**

 ${\bf MGEGD\ The\ Microarray\ Gene\ Expression\ Data\ Society:}$ 

http://www.mged.org/

NCBI Gene Expression Omnibus:

http://ncbi.nih.gov/geo/

NCBI Sequence Read Archive (SRA):

http://www.ncbi.nlm.nih.gov/sra

**EBI Microarray informatics:** 

http://www.ebi.ac.uk/microarray/index.html

Stanford Microarray Database:

http://smd.stanford.edu/

UCSF DeRisi lab:

http://derisilab.ucsf.edu/data/microarray/index.html

Broad Institute:

Gene Set Enrichment Analysis (GSEA)

Connectivity Map:

http://www.broadinstitute.org/cmap/