

Sequence Comparisons

- Homology searches
 - Usually 'one-against-one': BLAST, FASTA
 - Allows for comparison of individual sequences against databases comprised of individual sequences
- Profile searches

- Uses collective characteristics of a family of proteins

NATIONAL HUMAN GENOME RESEARCH INSTITUTE
Division of Intramural Research

Profiles, Patterns,
Motifs, and Domains

**National Human Genome Research Institute Division of Informative Research Control of Informative Research Control Informative Research Control Informative Research Control Control

Profiles

- Numerical representations of multiple sequence alignments
- Depend upon patterns or motifs containing conserved residues
- · Represent the common characteristics of a protein family
- Can find similarities between sequences with little or no sequence identity
- Allow for the analysis of distantly related proteins

NATIONAL HUMAN GENOME RESEARCH INSTITUTE
Division of Intromural Research

Pfam

- Collection of multiple alignments of protein domains and conserved protein regions that probably have structural, functional, or evolutionary importance
- Each Pfam entry contains:
 - Multiple sequence alignment of family members
 - Protein domain architectures
 - Species distribution of family members
 - Information on known protein structures
 - · Links to other protein family databases

Finn et al., Nucleic Acids Res. 44: D279-D285, 2016

Pfam A

- Based on *curated* multiple alignments of known members of a protein family ('seed alignment')
 - Pfam definition of 'family': a collection of related protein regions
 - Based on reference proteomes (UniProtKB)
- HMMER used to find all detectable protein sequences belonging to the family
- New 'true members' of the family are then used to generate the 'full alignment' for the protein family
- Given the method used to construct the alignments, hits are highly likely to be true positives

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Sequences Used in Examples

http://research.nhgri.nih.gov/teaching/seq_analysis.shtml

Conserved Domain Database (CDD)

- Identify conserved domains in a protein sequence
- Incorporates three-dimensional structural information to define domain boundaries and refine alignments
- Source data derived from:
 - Pfam A
 - Simple Modular Architecture Research Tool (SMART)
 - COG (orthologous prokaryotic protein families)
 - PRK ('protein clusters' of related protein RefSeq entries)
 - TIGRFAM

Marchler-Bauer et al., Nucleic Acids Res. 43: D222-D226, 2015

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Conserved Domain Database (CDD)

- CD-Search performed using RPS-BLAST
- Query sequence is used to search a database of pre-calculated position-specific scoring matrices
- Not the same method used by Pfam

PSI-BLAST

- Position-Specific Iterated BLAST search
- Used to identify distantly related sequences that are possibly missed during a standard BLAST search
- · Easy-to-use version of a profile-based search
 - Perform BLAST search against protein database
 - Use results to calculate a position-specific scoring matrix
 - PSSM replaces query for next round of searches
 - May be iterated until no new significant alignments are found

Altschul et al., Nucleic Acids Res. 25: 3389-3402, 1997

Multiple Sequence Alignment: A Quick Primer

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Why do multiple sequence alignments?

- Identify conserved regions, patterns, and domains
 - Experimental design

Predicting structure and function

- Identifying new members of protein families
- Provide basis for:
 - · Predicting secondary structure
 - Performing phylogenetic analyses, thereby determining evolutionary relationships (inferring homology)
 - Generating position-specific scoring matrices for use with sensitive sequence search methods

Overarching Considerations

- Absolute sequence similarity
 Create the alignment by lining up as many common characters as possible
- Conservation
 Take into account residues that can substitute for one another and not adversely affect the function of the protein
- Structural similarity

 Knowledge of the secondary or tertiary structure of the proteins
 being aligned can be used to fine-tune the alignment

NATIONAL HUMAN GENOME RESEARCH INSTITUTE
Division of Intramural Research

Protein vs. Nucleotide Multiple Sequence Alignments

- Concentrate on the protein level rather than on the nucleotide level
- Protein alignments tend to be more informative
- Less prone to inaccurate alignment ('20 vs. 4')

 Can 'translate back' to nucleotide sequences after doing the alignment

Selecting the Sequences

- 1. Use a reasonable number of sequences to avoid technical difficulties
 - Global alignment method: compute time increases exponentially as sequences are added to the set
 - Most alignment algorithms are ineffective on huge data sets (and may yield inaccurate alignments)
 - Phylogenetic studies resulting from inordinately large data sets can sometimes be intractable
 - Good starting point: 10-15 sequences
 - Ballpark upper limit: 50-100 sequences

XXXXXXXXXXXXXXXX

Selecting the Sequences

- 2. Sequences should be of about the same length
- 3. Trim sequences down, so as to only use regions that have been deemed similar by either:
 - · Pairwise search methods such as BLAST
 - Profile-based search methods such as PSI-BLAST

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Selecting the Sequences

- 4. Consider the degree of similarity in the sequence set, depending on what question is being asked
 - Use closely-related sequences to determine 'required' (highly conserved) amino acids
 - Use more divergent sequences to study evolutionary relationships
 - Good starting point: use sequences that are 30-70% similar to most of the other sequences in the data set
 - The most informative alignments result when the sequences in the data set are not too similar, but also not too dissimilar

Inspection: An Iterative Process

- Perform alignment on small set of sequences
- Examine the quality of the alignment, looking for:
 - · Conservation of residues across alignment
 - Conservation of physicochemical properties
 - Relatively neat block-type structure
 - Excessive numbers of gaps
- If alignment is good, can add new sequences to data set, then realign
- If alignment is not good, remove any sequences that result in the inclusion of long gaps, then realign

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Inspection: An Iterative Process

- Use visualization tools to identify 'key residues' and 'problem regions'
- · Cross-check against 'expertly created' multiple sequence alignments available online
- Use any available information from solved X-ray or NMR structures to nail down structurally important regions and to assess where gaps can (or cannot) be tolerated

Interpretation

- Absolutely conserved positions are *required* for proper structure and function
- Relatively well-conserved positions are able to tolerate limited amounts of change and not adversely affect the structure or function of the protein
- Non-conserved positions may 'mutate freely,' and these mutations can possibly give rise to proteins with new functions
- Gap-free blocks probably correspond to regions of secondary structure, while gap-rich blocks probably correspond to unstructured or loop regions

NATIONAL HUMAN GENOME RESEARCH INSTITUTE
Division of Intromural Research

Clustal Omega

- Allows for automatic multiple alignment of nucleotide or amino acid sequences
- Aligns data sets quickly and easily
- Can align sequences against a pre-existing alignment (an 'external profile')
- Can bias the location of gaps, based on known structural information
- Works with Jalview, a Java applet for viewing and manipulating results

Sievers et al., Mol. Syst. Biol. 7: 539, 2011

Progressive Alignment

- Align two sequences at a time, starting with the two most related sequences
- Gradually build up the multiple sequence alignment by adding additional (less-related) sequences to the alignment
- Uses protein scoring matrices and gap penalties to calculate alignments having the best score
- Major advantages of method
 - Generally fast
 - · Alignments generally of high quality

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Clustal Omega Output

- Pairwise alignment scores
- Multiple sequence alignment
- Cladogram
 - Tree that is assumed to be an estimate of a phylogeny
 - · Branches are of equal length
 - Cladograms can show common ancestry, but do not provide an indication of the amount of evolutionary time separating taxa
- Phylogram
 - Tree that is assumed to be an estimate of a phylogeny
 - · Branches are not of equal length

· Branch lengths proportional to the amount of inferred evolutionary change

Clustal Omega Conservation Patterns

Conservation patterns in multiple sequence alignments usually follow the following rules:

> Aromatics [WYF]

[KRH] Basic side chains (+) [DE] Acidic side chains (-)

Ends of helices [GP] Catalytic sites [HS]

Cysteine cross-bridges [C]

NATIONAL HUMAN GENOME RESEARCH INSTITUTE

Clustal Omega Conservation Patterns

Interpretation is empirical — there is no parallel to the E-values seen in BLAST searches to assess statistical significance

- * entirely conserved column (want in at least 10% of positions)
- conserved (strongly similar properties)
- semi-conserved (weakly similar properties)

Jalview

- Java applet available within Clustal Omega results
- Used to manually edit Clustal Omega alignments
- Color residues based on various properties
- Pairwise alignment of selected sequences
- Consensus sequence calculations
- Removal of redundant sequences
- Calculation of phylogenetic trees

T-COFFEE

- Combines sequence, profile, and structural information
 - Protein structures
 - RNA secondary structures
- Specialized algorithm for aligning transmembrane proteins, non-coding RNAs, and homologous promoter regions
- Can combine output from other methods into a single 'master alignment'
- Freely available at http://tcoffee.org

Magis et al., Methods Mol. Biol. 1079: 117-129 (2014)

Current Topics in Genome Analysis 2016

Next Lecture March 16, 2014

Regulatory and Epigenetic Landscapes of Mammalian Genomes

Laura Elnitski, Ph.D. National Human Genome Research Institute National Institutes of Health

XXXXXXXXXXX

