

PROJECTS	
PUBLICATIONS	
OUTREACH	
RESOURCES	
ІМРАСТ	

Moving the genome into the clinic

In the past, standard medical practice for genetic testing involved looking at one gene at a time. With new advances in our understanding of the genomic basis of health and disease and in technology, it is now possible to test all of our genes at once using tests called whole exome or whole genome sequencing. Medical uses of genome sequencing are being applied and adapted on a case-by-case basis, but research to study the optimal uses and implementation of these tests is needed.

Clinical Sequencing Exploratory Research Consortium

Gail Jarvik, M.D., Ph.D.

Arno G. Motulsky Endowed Chair Medicine and Genome Sciences Head, Medical Genetics University of Washington, Seattle PI CSER Coordinating Center and UW site Funded by NIH, NHGRI & NCI (U01HG006507, U01HG007307)

Clinical Sequencing Exploratory Research

Goal: Responsibly integrate genomic sequencing into routine medical care

- Explore the clinical application of genomic sequence data
 - Generate and interpret data
 - Communicate these to the physician and patient
- Provide best practices
- Provide an evidence base
- Overcome obstacles

(ANOTHER) NEW MEDICAL TECHNOLOGY

Requires systematic study, evidence base, and best practices to safely succeed

PROJECTS
PUBLICATIONS
OUTREACH
RESOURCES
ІМРАСТ

Learn More about CSER Online at WWW.CSET-CONSORTIUM.ORG

Moving the genome into the clinic

A case: CSER goes Cosmo

- 36 yo diagnosed at 6 with "hereditary spastic paraplegia"
 - Confined to crutches and wheelchair for decades
 - Daily painful episodes of spasticity, 5 surgeries
- CSER UNC WES: GCH1 [p.Arg216*], diagnosis of doparesponsive dystonia
- Dramatic dopa response
 - Walking without crutches, free of pain

http://www.cosmopolitan.com/_mobile/ advice/health/mystery-diagnosisparalyzed?src=email

Photos courtesy of Jim Evans and permission of patient

CSER Consortium

377 Researchers21 Institutions1 Consortium

Connect with CSER for news & networking:

Twitter @hail_CSER

LinkedIn via www.tiny.cc/CSER_on_LinkedIn

CSER Study Populations

Enrollment Summary

Current enrollment = 3152/4745 expected

Diagnostic Yield

		% of subjects with \geq 1 finding (median # of variants reported)				
Clinical Characteristics	Sample Size	P or LP	VUS	Single Recessive	Other	
Cancer (adult)	226	2.7% (1)	8% (1)	0%	1.8% (1)	
Cancer (pediatric)	11	9% (1)	64% (3)	9% (1)	0%	
DD/ID	122	21% (1)	21% (1)	1.6% (4.5)	0%	
Heart disease	104	23% (1)	26% (1)	1.0% (3)	1.0% (1)	
Hematology	13	8% (1)	8% (1)	0%	0%	
Hearing Loss	5	40% (2.5)	60% (1)	60% (1)	-	
Mitochondrial	1	0%	100% (1)	100% (1)	-	
Neurological	130	9% (1)	13% (1)	3% (1)	4% (1)	
Ophthalmology	67	28% (1)	13% (1)	9% (1)	0%	
Syndromic	143	14% (1)	9% (1)	1.4% (1.5)	4% (1)	

Cancer Germline Diagnostic Yield Varies by Diagnosis

Cases	(+)	Possible	(-)	Yield
346	33	176	273	10%
78	5	9	48	6%
31	5	18	24	16%
75	6	13	61	8%
54	7	32	43	13%
21	1	11	17	5%
27	1	17	22	4%
7	1	5	6	14%
25	1	17	18	4%
106	11	63	82	10%
	Cases 346 78 31 31 75 54 21 27 7 25 106	Cases(+)346337853153157565472112717125110611	Cases(+)Possible346331767859315187561354732211112715715251171061163	Cases(+)Possible(-)3463317627378594831518247561361547324321111172715671562511718106116382

Often change management

Exomes can save money without changing management: a case

- Patient in teens
- Movement disorder early in life
- Saw 12 experts in centers from Vancouver to Texas without a diagnosis, numerous tests
- PE: choreoathetosis and dystonia of limbs, most prominent at rest; progressed to include facial twitches and mild dysarthria
- *Exome:* de novo R418W (c.1252C>T) in ADCY5
 - Familial Dyskinesia with Facial Myokymia
- Ended diagnostic odyssey

Chen et al, Annals of Neurology.

Rate of Actionable Incidental Findings (IFs)

- Establish list of adult "actionable" gene-disease pairs
- Classify all Exome Variant Server (EVS) SNVs called "Disease Causing" by HGMD (615) and novel expected pathogenic (12)
 - 4300 European Ancestry
 - 2203 African Ancestry
- Contribute to national databases of variants (ClinVar)
- We will likely come across these again

Genes with Actionable Variants relevant to Adults

Highlighted genes are recommended for return by the American College of Medical Genetics and Genomics guidelines.

Amendola et al. Genome Res 2015. PMID: 25637381

Dominant			X-Linked
ACTA2	KCNQ1	RBM20	DMD
ACTC1	KIT	RET	EMD
ACVRL1	LDLR	RYR1	GLA
APC	LMNA	RYR2	ОТС
BMPR1A	MAX	SCN5A	
BRCA1	MEN1	SDHAF2	<u>Recessive</u>
BRCA2	MET	SDHB	ATP7B
CACNA1C	MLH1	SDHC	BCHE
CACNA1S	MLH3	SDHD	BLM
CACNB2	MSH2	SERPINC1	CASQ2
CDC73	MSH6	SGCD	COQ2
CDH1	Μυτγμ	SMAD3	COQ9
CNBP	MYBPC3	SMAD4	CPT2
COL3A1	MYH11	SMARCB1	F5
DMPK	МҮН7	STK11	GAA
DSC2	MYL2	TGFB2	HAMP
DSG2	MYL3	TGFB3	HFE
DSP	MYLK	TGFBR1	HFE2
ENG	NF2	TGFBR2	IDUA
EPCAM	PDGFRA	TMEM127	LDLRAP1
FBN1	PKP2	TMEM43	PAH
FH	PLN	TNNI3	PCBD1
FLCN	PMS2	TNNT2	PTS
GCH1	PRKAG2	TP53	QDPR
HMBS	PRKAR1A	TPM1	SERPINA1
KCNE1	PROC	TSC1	SLC25A13
KCNE2	PROS1	TSC2	SLC37A4
KCNH2	PTCH1	VHL	SLC7A9
KCNJ2	PTEN		

= **112** Total Genes

Mendelian Disease Variant Classification Terminology

ACMG Recommendation: Pathogenic (≠ mutation) Likely pathogenic (90%) Uncertain significance (VUS) Likely benign Benign (≠ polymorphism)

Classification criteria (strict for IFs)

	Segregation [*] in $>= 2$ unrelated families
	<u>OR</u>
Pathogenic	2 of 3:
	1. Segregation [*] in 1 family
	2. Identified in $>= 3$ unrelated individual
	3. De novo event in trio
	<u>OR</u>
	Protein truncation known to cause disease
	AND
	Below allele frequency cut off
	Identified in >= 3 unrelated individuals
Likely pathogenic	OR
	Segregation [*] in 1 family
	<u>OR</u>
	De novo event in trio
	AND
	Below allele frequency cut off

*1/16 probability cut-off to define segregation

Expected Rate of Actionable Variants:

Exome Variants Server (EVS) Results by Ancestry Group

Participants with classification	European ancestry* N=4300	African ancestry N=2203
Pathogenic variants (known)	30 (0.7%)	6 (0.3%)
Likely pathogenic variants (known)	52 (1.2%)	13 (0.6%)
Novel expected disruptive	6 (0.1%)	6 (0.3%)
Total pts with IFs	36 (0.8%)	12 (0.5%)

626 variant classifications deposited to ClinVar

**Caveats:* No CNV included, HIGHER in Ashkenazi Amendola et al., *Genome Res.* 2015. PMID: 25637381

EVS 6503, Pathogenic Cancer Variants

Amendola et al.

Table 4. Pathogenic and likely pathogenic variants

	Associated phenotype	Pathogenic variants (participants)	Likely pathogenic variants (participants)	Expected disruptive variants (participants)
ACMG genes				
BRCA1 or BRCA2	Breast/ovarian cancer	7 (7)	0 (0)	3 (3)
MSH6, PMS2, CHD1	GI cancer	4 (4)	1 (2)	2 (3)
LDLR	Hypercholesterolemia	4 (6)	7 (12)	0 (0)
LMNA1, MYBPC3, DSG2, MYH7, MYL2, MYL3, PKP2, TNNI3, TNNT2	Cardiomyopathy	4 (4)	14 (24)	2 (2)
RYR1	Malignant hyperthermia	4 (5)	1 (2)	0 (0)
KCNQ1, SCN5A	Arrhythmia	1 (1)	3 (7)	0 (0)
RET	Multiple endocrine neoplasia	1 (1)	0 (0)	0 (0)
TP53	Li-Fraumeni syndrome	1 (1)	2 (6)	0 (0)
DSC2, DSP	Arrhythmogenic right ventricular dysplasia	0 (0)	0 (0)	2 (2)
ACMG gene total		26 (29)	28 (53)	9 (10)
Non-ACMG genes				
SERPINA1	Alpha-1 antitrypsin def.	2 (4 ^a)	2 (3 ^b)	0 (0)
PROC	Protein C deficiency	1 (1)	2 (2)	0 (0)
PROS	Protein S deficiency	0 (0)	0 (0)	1 (1)
ATP7B	Wilson disease	1 (3 ^c)	0 (0)	0 (0)
ENG, ACVRL1	Hereditary hemorrhagic telangiectasia	1 (1)	1 (1)	0 (0)
FLCN	Birt-Hogg-Dube	1 (1)	0 (0)	0 (0)
DMD	Cardiomyopathy	0 (0)	1 (1)	0 (0)
KCNE1, KCNE2	Arrhythmia	0 (0)	2 (4)	0 (0)
SLC7A9	Cystinuria	0 (0)	1 (15)	0 (0)
HMBS	Porphyria	0	1 (1)	0 (0)
PTCH1	Basal cell nevus syndrome	0 (0)	0 (0)	1 (1)
Non-ACMG gene total		6 (7)	10 (12)	2 (2)
Grand total		32 (36)	38 (65)	11 (12)

^aParticipant was compound heterozygote for two pathogenic variants.

^bParticipant was compound heterozygote for one pathogenic variant and one likely pathogenic variant.

^cParticipant was heterozygous for a pathogenic variant or a likely pathogenic variant and does not count toward the total number of participants.

Data from CSER studies

Category	Sample Size	Number (%) of subjects with ≥1 Finding	Range (sites)
ACMG Incidental Findings: Pathogenic	2429	41 (1.7%)	0%-8% (10)
ACMG Incidental Findings: Likely Pathogenic	2372	15 (0.6%)	0%-8% (8)
Non-ACMG: Pathogenic	2429	39 (1.6%)	0%-8% (10)
Non-ACMG: Likely Pathogenic	2372	15 (0.6%)	0%-5% (8)
PGx Genes: FDA Indication	1820	28 (1.5%)	0.16%-88% (3)
PGx Genes: Other	206	4 (1.9%)	1.9% (1)
Carrier Genes: Pathogenic	1976	324 (16%)	0%-79% (9)
Carrier Genes: Likely Pathogenic	1968	138 (7%)	0%-40% (8)
Tumor: Potentially Clinically Relevant	120	106 (88%)	28%-100% (3)

Variant Classification QC: Overcalling

Recall random 25% of 615:

- 83/156 (53%) discrepant
- 52 reviewers, a few made systematic errors: all recalled
- Recall all pathogenic & likely pathogenic variants:
 - 44/79 (56%) discordant;
 - 42/44 (95%) overcalled (final call VUS)
- NOTE: Overcalling is a clinical problem

Amendola et al. Genome Res 2015. PMID: 25637381

Final CSER calls match other experts

 45/45 (100%) match with Sharing Clinical Reports Project (SCRP)

97/99 (98%) match with Partners Laboratory for Molecular Medicine (LMM)

Amendola et al. Genome Res 2015. PMID: 25637381

The Stakes are High in the Clinical Application of Genomics

Patients (& families) make serious decisions. False positives lead to:

- Unnecessary surgery; years of unnecessary screening
- Premature end to diagnostic pursuit, forgoing the true answer
- False negatives lead to:
 - Forgoing necessary preventive/therapeutic modalities
- Amplified by misclassification of family members as at-risk or not
- Family planning & abortion
- The psychological damage of misinformation

2014 Cross-Consortium Classification of 6 Variants (early ACMG rules)

Site	MSH6 c.2731C>T; p.Arg911*	RYR1 c.1840C>T; p.Arg614Cys	FBN1 c.4270C>G; p.Pro1424Ala	TSC2 c.736A>G; p.Thr246Ala	TNNT2 c.732G>T; p.Glu244Asp	LDLR c.967G>A; p.Gly323Ser
1	Pathogenic	Likely pathogenic/	VUS	VUS	VUS	VUS
2	Pathogenic	Pathogenic	Likely pathogenic/ VUS	VUS	VUS	VUS
3	Pathogenic	Pathogenic	VUS	VUS	VUS	VUS
4	Pathogenic	Pathogenic	VUS	VUS	Likely pathogenic	VUS
5	Pathogenic	Likely pathogenic/	Likely pathogenic/ VUS	Likely pathogenic	VUS	VUS
6	Pathogenic	Likely pathogenic	Pathogenic/ Likely pathogenic/	Likely pathogenic	VUS	Likely pathogenic/ VUS

Amendola et al., Genome Res 2015. PMID: 25637381

	Ben	iign 💦 🔪 🖌	Pathogenic			
	Strong	Supporting	Supporting	Moderate	Strong	Very strong
Population data	MAF is too high for disorder BA1/BS1 OR observation in controls inconsistent with disease penetrance BS2			Absent in population databases PM2	Prevalence in affecteds statistically increased over controls PS4	
Computational and predictive data		Multiple lines of computational evidence suggest no impact on gene /gene product BP4 Missense in gene where only truncating cause disease BP1 Silent variant with non predicted splice impact BP7 In-frame indels in repeat w/out known function BP3	Multiple lines of computational evidence support a deleterious effect on the gene /gene product PP3	Novel missense change at an amino acid residue where a different pathogenic missense change has been seen before PM5 Protein length changing variant PM4	Same amino acid change as an established pathogenic variant PS1	Predicted null variant in a gene where LOF is a known mechanism of disease PVS1
Functional data	Well-established functional studies show no deleterious effect BS3)	Missense in gene with low rate of benign missense variants and path. missenses common PP2	Mutational hot spot or well-studied functional domain without benign variation PM1	Well-established functional studies show a deleterious effect PS3	
Segregation data	Nonsegregation with disease BS4		Cosegregation with disease in multiple affected family members PP1	Increased segregation dat		
De novo data				De novo (without paternity & maternity confirmed) PM6	De novo (paternity and maternity confirmed) PS2	
Allelic data		Observed in <i>trans</i> with a dominant variant BP2 Observed in <i>cis</i> with a patherapic variant BP2		For recessive disorders, detected in trans with a pathogenic variant		
		parrogenic variant DF2		A(CMG Standar	d Recs
Other database		Reputable source w/out shared data = benign BP6	Reputable source = pathogenic PP5	Ri	chards et al (GIM 2015
Other data		Found in case with an alternate cause BP5	Patient's phenotype or FH highly specific for gene PP4	PI	MID:2574186	8

Pathogenic		(i) 1 Very strong (PVS1) AND		
		(a) \geq 1 Strong (PS1–PS4) OR	ſ	
		(b) ≥2 Moderate (PM1–PM6) OR	F	
		(c) 1 Moderate (PM1–PM6) and 1 supporting (PP1–PP5) OR	Class	
		(d) ≥2 Supporting (PP1–PP5)		
		(ii) ≥ 2 Strong (PS1–PS4) OR	C	Onu
		(iii) 1 Strong (PS1–PS4) AND		
		(a)≥3 Moderate (PM1–PM6) OR		
		(b)2 Moderate (PM1–PM6) AND \geq 2 Supporting (PP1–PP5) OR		
		(c)1 Moderate (PM1–PM6) $AND \ge 4$ supporting (PP1–PP5)		2015 0
	Likely pathogenic	 (i) 1 Very strong (PVS1) AND 1 moderate (PM1– PM6) OR 		2015 C
		 (ii) 1 Strong (PS1–PS4) AND 1–2 moderate (PM1–PM6) OR 		99 gerr
		(iii) 1 Strong (PS1–PS4) AND ≥2 supporting (PP1–PP5) OR		-9 class
		(iv) ≥3 Moderate (PM1–PM6) OR		50 010
		(v) 2 Moderate (PM1–PM6) AND ≥2 supporting (PP1–PP5) OR		by ACN
		(vi) 1 Moderate (PM1–PM6) AND ≥4 supporting (PP1–PP5)		
	Benign	(i) 1 Stand-alone (BA1) OR		
		(ii) ≥2 Strong (BS1–BS4)		
	Likely benign	 (i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OR 		
		(ii) ≥2 Supporting (BP1–BP7)		
	Uncertain	(i) Other criteria shown above are not met OR		
significance	 (ii) the criteria for benign and pathogenic are contradictory 			

ACMG Variant Classification Rules, continued

2015 CSER "bakeoff"

- 99 germline variants 9 classified by 9 sites
- -90 classified by 2-3 sites

by ACMG and own rules

Intra-laboratory Usual vs. ACMG Classification Comparison: 98 variants, 90 average 2.85 calls, 9 have 9 calls

			ACMG class					
			Р	LP	VUS	LB	В	Total
		Р	59	12	2	0	0	73
	Lab class	LP	5	58	5	0	0	68
		VUS	6	4	91	3	0	104
		LB	0	0	17	32	4	53
		В	0	0	4	5	28	37
		Total	70	74	119	40	32	335
Benign (i) 1 Stand-alone (BA1) (ii) ≥2 Strong (BS1–BS4		i) OR ← i4) ←		– MAF : – MAF :	> 5%	se freque		
Likely benign		(i) 1 Strong (BS1–BS4) and 1 supporting (BP1– BP7) OR					ncy	
Uncertain		 (ii) ≥2 Supporting (BP1–BP7) (i) Other criteria shown above are not met OR 						
signific	cance	(ii) the criteria for ben contradictory						

Inter-laboratory Concordance of 98 variants

Variant with Major Disagreement: Why?

SPG7:c.1529C>T (p.Ala510Val)

- 0.4% EU chromosomes (267/66688; 0.8% people; ExAC); 3/50 people in CSER
- AR, late-onset, +/- reduced penetrance, spastic paraplegia Sanger confirmed

CSER Ongoing Outcomes Efforts: *Steps to access to genomic medicine*

Evidence base

Research

Practice Guidelines Insurance Coverage

Next generation sequencing panels for the diagnosis of colorectal cancer and polyposis syndromes: a cost-effectiveness analysis. Gallego, Shirts, Bennette, et al.

The cost-effectiveness of returning incidental findings from next-generation genomic sequencing

Caroline S. Bennette, MPH¹, Carlos J. Gallego, MD, MS^{1,2}, Wylie Burke, MD, PhD³, Gail P. Jarvik, MD, PhD² and David L. Veenstra, PharmD, PhD^{1,4}

Comparative effectiveness of next generation genomic sequencing for disease diagnosis: Design of a randomized controlled trial in patients with colorectal cancer/polyposis syndromes $\frac{1}{24}$ Carlos J. Gallego ^{a,b}, Caroline S. Bennette ^b, Patrick Heagerty ^c, Bryan Comstock ^c,

Martha Horike-Pyne^a, Fuki Hisama^a, Laura M. Amendola^a, Robin L. Bennett^a, Michael O. Dorschner^d, Peter Tarczy-Hornoch^e, William M. Grady^f, S. Malia Fullerton^g, Susan B. Trinidad^g, Dean A. Regier^h, Deborah A. Nickersonⁱ, Wylie Burke^g, Donald L. Patrick^j, Gail P. Jarvik^a, David L. Veenstra^{b,*} *J Clin Onc. 2015.* PMID 25940718

Genet Med. 2014. PMID: 25394171

Contemp Clin Trials. 2014. PMID: 24997220

Goal: Compare colorectal cancer panel cost-effectiveness

Categories of Associated Conditions	Genes	Panel 1	Panel 2	Panel 3	Panel 4
Lynch	MLH1, MSH2, PMS2, MSH6, EPCAM	~	~	~	~
Autosomal Dominant ↑Penetrance	APC, BMPR1A, SMAD4, CDH1, STK11		~	~	~
Autosomal Recessive ↑Penetrance	MUTYH			~	~
Autosomal Dominant ∳Penetrance	PTEN, TP53, GALNT12, POLE, POLD1, GREM1, AKT1, PIK3CA				~

Gallego et al, J Clin Oncol 2015, PMID 25940718

Results: Incremental Cost-Effectiveness Ratios

Compared to Standard of Care or Next Best Strategy	5 Lynch genes	10 genes =5+AD ↑ Penet	11 genes= 10+AR ↑ Penet	19 genes 11+AD ↓ Penet
Δ Costs	\$2,800	\$4,500	\$4,700	\$670
Δ Quality Adjusted Life Years (QALY)	0.019	0.121	0.128	0.009
Cost per QALY gained	\$144,200	\$37,500	\$36,500	\$77,300

Gallego et al, J Clin Oncol 2015, PMID 25940718

Sensitivity Analysis: Relatives improve outcomes

Gallego et al, J Clin Oncol 2015, PMID 25940718

FDA Regulation of Genomic Tests

Regulatory changes raise troubling questions for genomic testing

Genet Med. 2014 PMID: 25255365

Barbara J. Evans, PhD, JD¹, Michael O. Dorschner, PhD^{2,3}, Wylie Burke, MD, PhD⁴ and Gail P. Jarvik, MD, PhD^{5,6}

By 6 October 2014, many laboratories in the United States must begin honoring new individual data access rights created by recent changes to federal privacy and laboratory regulations. These access rights are more expansive than has been widely understood and pose complex challenges for genomic testing laboratories. This article analyzes regulatory texts and guidances to explore which laboratories are affected. It offers the first published analysis of which parts of the vast trove of data generated during next-generation sequencing will be accessible to patients and research subjects. Persons tested at affected laboratories seemingly will have access, upon request, to uninterpreted gene variant information contained in their stored variant call format, binary alignment/map, and FASTQ files. A defect in the regulations will subject some non-CLIA-regulated research laboratories to these new access requirements unless the Department of Health and Human Services takes swift action to avert this apparently unintended consequence. More broadly, all affected laboratories face a long list of daunting operational, business, compliance, and bioethical issues as they adapt to this change and to the Food and Drug Administration's recently announced plan to publish draft guidance outlining a new oversight framework for lab-developed tests.

Genet Med advance online publication 25 September 2014

Key Words: access rights; CLIA; FDA; HIPAA; return of results

Evans BJ et al., Statutory change for FDA to require submission of data.

Comments of Barbara J. Evans, Ph.D., J.D., LL.M. and Gail P. Jarvik, M.D., Ph.D. in Dockets FDA-2011-D-0360: Framework for Regulatory Oversight of Laboratory Tests; Draft Guidance.

Major Medical Journal In press, 2015 embargoed

20 Signatures

Highly Cited CSER Publications

CSER Publications through March, 2015

- 1. Green RC, et al., ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. *Genet Med.* 2013 Jul; 15(7):565-74.
- 2. Zaidi S, et al., De novo mutations in histone-modifying genes in congenital heart disease. *Nature.* 2013 Jun 13; 498(7453): 220-3.
- 3. Rehm HL, et al., ACMG clinical laboratory standards for next-generation sequencing. *Genet Med.* 2013 Sep; 15(9): 733-47.
- 4. Green RC, et al., Exploring concordance and discordance for return of incidental findings from clinical sequencing. *Genet Med.* 2012 Apr; 14(4):405-10.
- 5. Foster MW, et al., Evaluating the utility of personal genomic information. *Genet Med.* 2009 Aug; 11(8): 570-4.
- 6. Johnston JJ, et al., Secondary variants in individuals undergoing exome sequencing: screening of 572 individuals identifies high-penetrance mutations in cancer-susceptibility genes. *Am J Hum Genet.* 2012 Jul 13;91(1):97-108.
- Burke W, et al., Recommendations for returning genomic incidental findings? We need to talk! *Genet Med.* 2013 Nov; 15(11):854-9.
- 8. Biesecker LG., Opportunities and challenges for the integration of massively parallel genomic sequencing into clinical practice: lessons from the ClinSeq project. *Genet Med.* 2012 Apr; 14(4): 393-8.
- 9. Wolf SM, et al., Point-counterpoint. Patient autonomy and incidental findings in clinical genomics. *Science*. 2013 May 31;340(6136):1049-50.
- 10. Dorschner MO, et al., Actionable, pathogenic incidental findings in 1,000 participants' exomes. *Am J Hum Genet.* 2013 Oct 3;93(4):631-40.

Top 17 Most Influential CSER Publications: per PIs

- 1. Amendola et al., Actionable exomic incidental findings in 6503 participants: challenges of variant classification. *Genome Res*, 2015.
- 2. Appelbaum et al., Informed consent for return of incidental findings in genomic research. *Genet Med* 2014.
- 3. Berg et al., Processes and preliminary outputs for identification of actionable genes as incidental findings in genomic sequencing data in the CSER Consortium. *Genet Med.* 2013.
- 4. Bernhardt, Genetic counselors and the future of clinical genomics. *Genome Medicine*, 2014.
- 5. Biesecker & Green, Diagnostic clinical genome and exome sequencing. *NEJM.* 2014.
- 6. Burke et al., The translational potential of research on the ethical, legal, and social implications of genomics. *Genet Med.* 2014.
- 7. Dorschner et al., Actionable, pathogenic incidental findings in 1,000 participants' exomes. *AJHG* 2013.
- 8. Evans et al., Regulatory changes raise troubling issues for genomic testing. *Genet Med.* 2014.
- 9. Facio et al., A Genetic Counselor's Guide to Using Next-Generation Sequencing in Clinical Practice *J Genet Couns.* 2013.

- 10. Fan et al., GCH1 heterozygous mutation identified by whole-exome sequencing as a treatable condition in a patient presenting with progressive spastic paraplegia. *J Neurol.* 2014.
- 11. Green et al., GINA, genetic discrimination and genomic medicine. *NEJM* 2015.
- 12. Henderson et al., The challenge of informed consent and return of results in translational genomics: empirical analysis and recommendations. *J Law Med Ethics*
- 13. Jarvik et al., Return of genomic results to research participants: The floor, the ceiling, and the choices in be-tween. *AJHG* 2014.
- 14. Kircher et al., A general framework for estimating the relative pathogenicity of human genetic variants. *Nat Genet.* 2014.
- 15. McLaughlin et al., A systematic approach to the reporting of medically relevant findings from whole genome sequencing. *BMC Med Genet* 2014.
- 16. Parsons et al., Clinical tumor sequencing: an incidental casualty of the American College of Medical Genetics and Genomics recommendations for reporting of incidental findings. *JCO* 2014.
- 17. Yang et al., Clinical whole-exome sequencing for the diagnosis of mendelian disorders. *NEJM* 2013.

(Ordered by 1st author)

Recent Impact

Recent Highlights Volumes 93 & 94

Review

Beyond GWASs: Illuminating the Dark Road from Association to Function

Articles & Reports	
Actionable, Pathogenic Incidental Findings in 1,000 Participants' Exomes	Michael O. Dorschner, Laura M. Arnendola, Emily H. Turner, Peggy D. Robertson, Brian H. Shirts, Carlos J. Gallego, Robin L. Bennett, Kelly L. Jones, et al.
Reliable Identification of Genomic Variants from RNA-Seq Data	Robert Piskol, Gokul Ramaswarni, and Jin Billy Li
Pulling out the 1%: Whole-Genome Capture for the	Meredith L. Carpenter, Jason D. Buenrostro, Cristina
Targeted Enrichment of Ancient DNA Sequencing	Valdiosera, Hannes Schroeder, Morten E. Allentoft, Martin
Libraries	Sikora, Morten Rasmussen, Simon Gravel, et al.
Gain-of-Function Mutations in SCN11A Cause Familial	Xiang Yang Zhang, Jingmin Wen, Wei Yang, Cheng Wang,
Episodic Pain	Luna Gao, Liang Hong Zheng, Tao Wang, Kalkai Ran, et al.
Whole-Exome Sequencing Identifies Rare and Low-	Leslie A. Lange, Youna Hu, He Zhang, Chenyi Xue, Ellen M.
Frequency Coding Variants Associated with LDL	Schmidt, Zheng-Zheng Tang, Chris Bizon, Ethan M. Lange,
Cholesterol	et al.
A Higher Mutational Burden in Females Supports a	Sébastien Jacquemont, Bradley P. Coe, Micha Hersch,
"Female Protective Model" in Neurodevelopmental	Michael H. Duyzend, Niklas Krumm, Sven Bargmann,
Disorders	Jacques S. Beckmann, Jill A. Rosenfeld, et al.
GeMes, Clusters of DNA Methylation under Genetic	Yun Liu, Xin Li, Martin J. Aryee, Tomas J. Ekström, Leonid
Control, Can Inform Genetic and Epigenetic Analysis of	Padyukov, Lars Klareskog, Amy Vandiver, Ann Zenobia
Disease	Moore, et al.
Joint Analysis of Functional Genomic Data and Genome- wide Association Studies of 18 Human Traits	Joseph K. Pickrell
Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders	Dalila Pinto, Elsa Delaby, Daniele Merico, Mafalda Barbosa, Alison Merikangas, Lambertus Kiel, Bhoorna Thiruvahindrapuram, Xiao Xu, et al.
Return of Genomic Results to Research Participants: The Floor, the Ceiling, and the Choices In Between	Gail P. Jarvik, Laura M. Amendola, Jonathan S. Berg, Kyle Brothers, Ellen W. Clayton, Wendy Chung, Barbara J. Evans, James P. Evans, et al.
Transcriptional Consequences of 16p11.2 Deletion	lan Blumenthal, Ashok Ragavendran, Serkan Erdin,
and Duplication in Mouse Cortex and Multiplex Autism	Lambertus Kiei, Aarathi Sugathan, Jolene R. Guide, Poornima
Families	Manavalan, Julian O. Zhou, et al.

Stacey L. Edwards, Jonathan Beesley, Juliet D. French, and

Alison M. Dunning

2014 AJHG Anniversary issue listed 11 notable papers of last 3 years: 2/11 from CSER

CSER @ ACMG 2015

Presentations/Community Dissemination

20 presentations, 14 posters, 9 sites

- 1. Amendola. How to educate/counsel patients about WES and secondary findings.
- 2. Rehm. ACMG Short Course: Clinical Exome Sequencing: Comparison of Practices across Labs.
- 3. Chung. Case studies from the clinician's perspective and comparison of WES vs. WGS.
- 4. Spinner. The Yield of exomes for various clinical indications: CSER experience.
- 5. Plon. Use of exomes/RNA-Seq in oncology. ACMG Short Course: Clinical exome.
- 6. MacRae. An approach to cardiomyopathy phenotypes: The devil is in the details.
- 7. Biesecker. Genotype-phenotype correlations in the ClinSeq project.
- 8. Berg. Technical challenges in the application of genomic tools for healthy populations.
- 9. Veenstra. Economic considerations in the realm of public health genomics.
- 10. Henderson. Gene-Screen: A report on a pilot study implementing targeted genomic analyses in a healthy population.
- 11. Plon et al. Display of genetic information in the electronic health record: From varied chaos to everything in its place.

- 12. Li et al. Phenotype capture and utilization of a common electronic health record system to evaluate pediatric individuals with intellectual disability undergoing exome sequencing.
- 13. Bedoukian et al. The individualized medical genetics center: Facilitating systematic integration of genetic testing into patient care.
- 14. Akkari et al. Carrier screening using whole genome sequencing in a healthy population: Is the future now?
- 15. Scollon. Genetic counselor luncheon and forum: Frontline experiences in obtaining informed consent for genomic sequencing.
- Rehm. Big data meets big sequencing A vision for the future: "Deciphering the genome: Community-driven Approaches".
- 17. Yang et al. Key elements for clinical exome sequencing.
- 18. Jarvik et al. The CSER Consortium: Clinical Sequencing Exploratory Research: Integrating genomic sequencing into the clinic.
- 19. Slack et al. From PediSeq to PediSeekers: A crowdsourcing approach to variant interpretation.
- 20. Gornick et al. The public's preferences for the return of secondary findings identified through genome sequencing: Information and deliberation make a difference.

CSER Working Group Papers

Published/in press/submitted

Actionability & Return of Results (ROR)

Berg et al., "Processes and preliminary outputs for identification of actionable genes as incidental findings in genomic sequencing data in the CSER Consortium." *Genet Med.* 2013; 15(11):860-7. PMID: 24195999

Jarvik et al., "Return of Genomic Results to Research Participants: The Floor, the Ceiling, and the Choices in Between. *Am J Hum Genet.* 2014; 94(6):818-26. PMID: 24814192

Amendola et al., "Challenges of variant classification: Pathogenicity classification from 6503 participant's exomes." *Genome Research* 2015. PMID: 25637381

Electronic Health Records

Tarczy-Hornoch et al., "A survey of informatics approaches to whole-exome and whole-genome clinical reporting in the electronic health record." *Genet Med.* 2013; 15(10):824-32. PMID: 24071794

Brian Shirts, et al. "Optimal management of different types of genetic information in the Electronic Medical Record." *JAMIA, in press*

Genetic Counselors

Amendola LM, et al., "Illustrative Case Studies in the Return of Exome and Genome Sequencing Results." *Personalized Medicine*, in-press.

Informed Consent & Governance

Henderson GE, et al., "The challenge of informed consent and return of results in translational genomics: empirical analysis and recommendations." *J Law Med Ethics.* 2014 Sep; 42(3). PMID: 25264092

Appelbaum PS, et al., "Models of consent to return of incidental findings in genomic research." *Hastings Cent Rep.* 2014 Jul-Aug. PMID: 24919982

Outcomes & Measures

Gray SW, et al. "Social and behavioral research in genomic sequencing: approaches from the Clinical Sequencing Exploratory Research Consortium Outcomes and Measures Working Group." *Genet Med.* 2014 Mar 13. PMID: 24625446

Pediatrics

Clayton EW et al., "Addressing the ethical challenges in genetic testing and sequencing of children." *Am J Bioeth.* 2014 Mar; 14(3): 3-9. PMID: 24592828

Brothers KB, et al., "When Participants in Genomic Research Group Up: Contact and Consent at the Age of Majority." (submitted to *Pediatrics*)

McCullough LB, et al., "Professionally Responsible Disclosure of Genome Sequencing Results in Pediatrics Clinical Practice." (submitted to *Pediatrics*)

Summary

- Hit rate differs by clinical indication
- Incidental finding rate is low
- CSER is working to resolve obstacles to genomic medicine
 - Classify variants
 - Improve ACMG criteria
 - Provide an evidence base
 - When
 - Best practices
- ELSI work, regulatory analyses

Acknowledgements

Baylor College of Medicine	Sharon Plon & Will Parsons	Boston Children's Hospital Columbia University	Ingrid Holm Paul Appelbaum
Brigham & Women's Hospital	Robert Green		Wendy Chung
NHGRI ClinSeq Study	Leslie Biesecker	Children's Mercy	Jeremy Garrett
Children's Hospital of Philadelphia	lan Krantz & Nancy Spinner	Hospital Johns Hopkins	Michelle Lewis
Dana-Farber Cancer Institute	Levi Garraway & Pasi Janne	Mayo Clinic	Rich Sharp
HudsonAlpha Institute	Richard Myers	Seattle Children's Hospital	Holly Tabor
Kaiser Permanente	Katrina Goddard & Ben Wilfond	UC - San Francisco, Mayo College of	Barbara Koenig, Gloria Peterson, &
University of Michigan	Arul Chinnaiyan	Medicine, &	Susan Wolf
University of North Carolina	Jim Evans	University of Minnesota	
University of Washington	Gail Jarvik	Vanderbilt University &	Ellen Clayton & Bartha Knoppers
Coordinating Center (UW)	Gail Jarvik	McGill University	

Wylie Burke

Debbie Nickerson

Peter Tarczy-Hornoch

NATIONA ANCER INSTITUT National Human Genome Research Institute

SER Meeting pring 2015 Is, CAP, NIH