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Every revolution in science — from 
Copernican heliocentric model to the 
rise of statistical and quantum 
mechanics, from Darwin’s theory of 
evolution and natural selection to the 
theory of the gene — has been driven by 
one and only one thing: access to data. 
 

 –John Quackenbush 
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@johnquackenbush-Every revolution in 
the history science has been driven by 
one and only one thing: access to data. 

Twitter version, 115 characters with spaces 

A Brief History of 
Expression Analysis 
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February 2001: Completion of the Draft Human Genome 

Public HGP Celera Genomics 

Gene 

Function 

Protein 
RNA 

Structure 

Folding 
R

eg
ul

at
io

n 

Molecular Biology in 7 Words 
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The Genome Project has provided a “parts list” 
for a human cell 

Different cell types express different sets of genes 

Neuron 

Thyroid Cell 

Lung Cell 

Cardiac Muscle 

Pancreatic Cell 

Kidney Cell 

Skeletal Muscle 

Skin Cell 
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Northern Blots: 
Before the Dawn of Time 

http://http://www.lookfordiagnosis.com/mesh_info.php?term=Blotting%2C+Northern&lang=1 

Northern Blots 

•  The size of the amplification product is the filter on the data 
•  Quantitation requires normalization 
•  Normalization is based on assumptions 
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Quantitative RT-PCR: 
The Ancient World 

Quantitative PCR 

•  Paired hybridization of two primers is the filter on the data 
•  Quantitation requires normalization (comparison to standard curves) 
•  Normalization is based on assumptions 
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Large-scale Quantitative RT-PCR: 
The Dawn of the Modern Age 
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Beyond qRT-PCR: Microarrays 

Spatial position is the filter on the data. 



10 

NHGRI Current Topics in Genome Analysis 2016 
Week 10: Expression Analysis, Functional Enrichment, and Network Inference 
 

April 27, 2016 
John Quackenbush, Ph.D. 

Beyond Microarrays: RNA-seq 

Treatment 
Options 

Quality 
Of Life 

Genetic 
Risk 

Early 
Detection 

Patient  
Stratification 

Disease 
Staging 

Outcomes 

Natural History of Disease  Clinical Care 

Environment 
 +  Lifestyle 

Birth Treatment Death 

Disease Progression and Precision Care 

Biomarkers 

Adapted from a slide by Peter van der Spek, Erasmus University 
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Experimental 
Overview 

Expression Analysis Pipeline: Microarrays 

Design and perform experiment 

Process and normalize data 

Perform statistical analysis 

Find “differentially expressed” genes 

Biological interpretation 
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Design the 
Experiment 

•  The goal of an experiment dictates 
everything from how the samples are 
collected to how the data are generated 

•  The design of the analytical protocol should 
be reflected in the design 
–  Do we have enough replicates? 
–  Do we have sufficient controls? 
–  Do we collect samples and data to avoid 

confounding and batch effects? 

Why Design an Experiment? 
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•  In biology, “traditional” approaches to inquiry involved 
hypothesis testing. 
•  We identify a problem and postulate a mechanism 
•  We design an experiment in which we perturb the system and then 

look for changes 
•  The response of the system either validates or invalidates our 

hypothesis 

•  In these types of experiments, we attempt to tightly control 
the variables so as to carefully measure the influence of 
these, perturbing a single parameter at a time 

•  Good experimental design requires sufficient replication to 
estimate the effects we wish to measure 

Basis of Experimental Design 

•  Functional genomics technologies have dramatically 
changed the way in which we approach biological 
questions 
•  We can now survey the responses of thousands of genes, 

proteins, or metabolites in a particular system and look for patterns 
of expression 

•  These “hypothesis generating” experiments do not (necessarily) 
require a mechanistic hypothesis ahead of time 

•  However, this does not mean we do not have to carefully design 
our experiment and analyze the data 

•  Here, we attempt to control the variables so as to carefully 
measure the influence of these, perturbing a single 
parameter at a time 

•  Good experimental design requires sufficient replication to 
estimate the effects we wish to measure 

Basis of Experimental Design 
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•  Class Comparison 
•  Can I find genes that distinguish between two classes, such as 

tumor and normal? 

•  Class Discovery 
•  Given what I think is a uniform group of samples, can I find 

subsets that are biologically meaningful? 

•  Classification 
•  Given a set of samples in different classes, can I assign a new, 

unknown sample to one of the classes? 

•  Large-scale Functional Studies 
•  Can I discover a causative mechanism associated with the 

distinction between classes? 

These are often not completely distinct and a single dataset can often be 
used for multiple purposes 

Types of Experiments 

Normalization 
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•  The goal of normalization is to remove 
systematic variation from the data and 
scale it so that comparisons can be made 
across studies 

Why Normalize Data? 

RMA Background correction 

• Expression= Background (N(0,σ2) + Signal (Exp(α)) 
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RMA Normalization 
•  Force the empirical distribution of probe intensities to be 

the same for every chip in an experiment 
•  The common distribution is obtained by averaging each 

quantile across chips: 
 Quantile Normalization 

One distribution for all arrays:  
the black curve 
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RMA: Probe set summary 

• Robustly fit a two-way model yielding an estimate of 
log2(signal) for each probe set 

•  Fit may be by  
•  median polish (quick) or by  
•  Mestimation (slower but yields standard errors and good quality 

• RMA reduces variability without loosing the ability to 
detect differential expression 

RMA: Before and After 

http://www.slideshare.net/wjjessen/covance-talk 
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Ratio-Intensity: Before 

Ratio-Intensity: After 
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Normalization 

•  There are many, many methods 
• All attempt to do the same thing, but all have their own 

assumptions that may or may not be violated 
• RMA is widely accepted as the standard for microarrays 
•  There is less consensus on what works best for RNA-seq 
• We constantly have to test our assumptions, even with 

normalization 

GTEx: Complex data requires complex methods 
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Clustering: 
Finding Patterns 

Hierarchical Clustering 
1. Calculate the distance between all genes. Find the smallest distance. 

If several pairs share the same similarity, use a predetermined rule 
to decide between alternatives. 

G1 
G6 

G3 

G5 

G4 

G2 

2. Fuse the two selected clusters to produce a new cluster that now 
contains at least two objects. Calculate the distance between the 
new cluster and all other clusters. 

3. Repeat steps 1 and 2 until only a single cluster remains. 

G1 

G6 

G3 

G5 

G4 

G2 

4. Draw a tree representing the results. 



21 

NHGRI Current Topics in Genome Analysis 2016 
Week 10: Expression Analysis, Functional Enrichment, and Network Inference 
 

April 27, 2016 
John Quackenbush, Ph.D. 

g8 g1 g2 g3 g4 g5 g6 g7 

g7 g1 g8 g2 g3 g4 g5 g6 

g1 is most like g8 

g7 g1 g8 g4 g2 g3 g5 g6 

g4 is most like {g1, g8} 

(HCL2) 

Hierarchical Clustering 

g7 g1 g8 g4 g2 g3 g5 g6 

g6 g1 g8 g4 g2 g3 g5 g7 

g5 is most like g7  

g6 g1 g8 g4 g5 g7 g2 g3 

{g5,g7} is most like {g1, g4, g8}  

(HCL3) 

Hierarchical Clustering 
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g6 g1 g8 g4 g5 g7 g2 g3 

(HCL4) 

43 

Hierarchical Clustering 

Agglomerative Linkage Methods 

Linkage methods are rules or metrics that return a value 
that can be used to determine which elements (clusters) 
should be linked. 
 
Three linkage methods that are commonly used are:  
 

•    Single Linkage 
•    Average Linkage 
•    Complete Linkage 

(HCL6) 
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Cluster-to-cluster distance is defined as the minimum 
distance between  members of one cluster and 
members of the another cluster. Single linkage tends to 
create ‘elongated’ clusters with individual genes chained 
onto clusters. 
 

DAB = min ( d(ui, vj) ) 
 

where u ∈ A and v ∈ B 
for all i = 1 to NA and j = 1 to NB 

Single Linkage 

(HCL7) 

DAB 

Cluster-to-cluster distance is defined as the average 
distance between all members of one cluster and all 
members of another cluster. Average linkage has a slight 
tendency to produce clusters of similar variance. 
 

DAB =  1/(NANB) Σ Σ ( d(ui, vj) )  
 

 where u ∈ A and v ∈ B 
for all i = 1 to NA and j = 1 to NB 

(HCL8) 

DAB 

Average Linkage 
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Cluster-to-cluster distance is defined as the maximum 
distance between members of one cluster and members 
of the another cluster. Complete linkage tends to create 
clusters of similar size and variability. 
 

DAB = max ( d(ui, vj) ) 
 

where u ∈ A and v ∈ B 
for all i = 1 to NA and j = 1 to NB 

(HCL9) 

DAB 

Complete Linkage 

Comparison of Linkage Methods 

Single Average Complete 
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1. Specify number of clusters, e.g., 5.  

2. Randomly assign genes to clusters. 

K-means/K-medians Clustering (KMC) 
49 

3. Calculate mean / median expression profile of each cluster. 

4. Select a gene and move it to the cluster having the closest 
mean profile. 
 

6. Repeat steps 4 and 5 until genes cannot be shuffled around any more,  
OR a userspecified number of iterations has been reached.   

5. If the gene is shifted to a new cluster, recalculate means for the winning 
and losing clusters. 

KMC, continued 

kmeans is most useful when the user has an a priori hypothesis about the 
number of clusters the genes should belong to. 

50 
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Finding Differentially 
Expressed Genes 

Lies, Damn Lies, and 
Statistics 

t-test for each gene 
•  Tests whether the difference between the mean of 

the query and reference groups are the same 
•  Essentially measures signal-to-noise 
•  Calculate p-value (permutations or distributions) 
•  May suffer from intensity-dependent effects 

Finding Significant Genes 

t = signal = difference between means =  <Xq> – <Xc>_ 
noise          variability of groups            SE(XqXc) 

c

c

q

q

nn

XcXq
t

22 σσ
+

−
=
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A significant 
difference 

Probably 
not 

t-tests 
53 

Schematic of the major components that are central to any limma analysis.  

Matthew E. Ritchie et al. Nucl. Acids Res. 2015;nar.gkv007 
© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. 

limma: The standard for microarray analysis 
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Biological Interpretation 

What do the genes in  
this list do? 

Tell me a story, Grampa 

Biological Interpretation 

• An obvious way to gain biological insight is to 
assess the differentially expressed genes in 
terms of their known function(s) 

• Requires an automated and objective 
(statistical) approach 

• Functional profiling or pathway analysis 
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Early functional analyses 
• Manually annotate list of differentially expressed 
(DE) genes  

• Extremely time-consuming, not systematic, user-
dependent 

• Group together genes with similar function 

• Conclude functional categories with most DE 
genes important in disease/condition under study 

• BUT… it may not be the right conclusion 

• This is what we call “Biopoetry.” 

GO and functional analysis 

Immune response
Metabolism
Transcription
Energy production
Neurotransmission
Protein transport

Functional category Number of sig genes
Immune response 40
Metabolism 20
Transcription 20
Energy production 10
Neurotransmission 5
Protein transport 5
TOTAL 100

Immune response category contains 40% of all 
significant genes - by far the largest category.  

Reasonable to conclude that immune response may be 
important in the condition being studied? 
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However … 

• What if 40% of the genes on the array were 
involved in immune response? 

• Only detected as many significant immune 
response genes as expected by chance 

• Need to consider not only the number of 
significant genes for each category, but also 
total number on the array 

Same example, relative to background 

Functional 
category

Number of genes 
on array

Observed number of 
significant genes

Expected number of 
significant genes

Immune response 8000 40 40
Metabolism 4000 20 20
Transcription 2000 10 10
Energy production 4000 30 20
Neurotransmission 200 5 1
Protein transport 1800 5 9

ALL 20000 100

Expected number of significant genes for category X is 
 (num sig genes ÷ total genes on array)*(num genes in category X on array) 
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Functional 
category

Number of genes 
on array

Observed number of 
significant genes

Expected number of 
significant genes

Immune response 8000 40 40
Metabolism 4000 20 20
Transcription 2000 10 10
Energy production 4000 30 20
Neurotransmission 200 5 1
Protein transport 1800 5 9

ALL 20000 100

•  Now,	
  energy	
  produc/on	
  and	
  neurotransmission	
  categories	
  
appear	
  more	
  interes/ng	
  as	
  many	
  more	
  significant	
  genes	
  
were	
  observed	
  than	
  expected	
  by	
  chance	
  

•  Largest	
  categories	
  are	
  not	
  necessarily	
  the	
  most	
  interes/ng!	
  

Same example, relative to background 

https://david.ncifcrf.gov/ 
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http://software.broadinstitute.org/gsea/index.jsp 

Gene Ontology 
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KEGG pathway database 

WikiPathways 
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67 

Pathway Commons 

MSigDB 
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Biological Networks 

Can we make this more 
complicated? 

G
en

es
 

Conditions 

Expression data 
(Phenotype I) 

G
en

es
 

Conditions 

Expression data 
(Phenotype II) 

How NOT to do Network Analysis 

Statistical 
Comparison 

Differentially 
Expressed 

Genes 

+ 

Add Protein-Protein 
Interaction Network 

Color and Start 
Bio-Poetry 

•  Should things that are differentially 
expressed be connected? 

•  Is the PPI network even “relevant”? 
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G
en

es
 

Conditions 

Expression data 
(Phenotype I) 

G
en

es
 

Conditions 

Expression data 
(Phenotype II) 

Statistical 
Analysis 

Differentially 
Expressed 

Genes 

“t-test” 

“r2” 

Correlation 
Network 

Color and Start 
Bio-Poetry 

•  Are things that are correlated 
functionally connected? 

•  Are correlations the same in 
different phenotypes? 

How NOT to do Network Analysis (2) 

How we do Network Analysis 

G
en

es
 

Conditions 

Expression data 
(Phenotype I) 

G
en

es
 

Conditions 

Expression data 
(Phenotype II) 

Infer 
phenotype-specific 

network 

Infer 
phenotype-specific 

network 

Compare Network 
Topologies 

Analyze Network 
Topology 
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Simultaneously 
compare differential 

structure  
and expression 

+ 
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•  There is no single “right” network 

•  The structure of the network matters and network 
structure often changes between states. 

 
•  We have to move from asking “Is the network right?” 

to asking “Is the network useful?”  

•  The real question is “Does a network model inform our 
understanding of biology?” 

Starting Assumptions 

Modeling Gene Regulatory 
Networks 
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Integrative Network Inference: 
PANDA 

Regulation of Transcription 

Specific transcription factors 

promoter 
regulatory 
sequences 
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A Simple Idea: Message Passing 
Transcription Factor 

Downstream Target 

The TF is Responsible for 
communicating  with its Target 

The Target must be Available 
to respond to the TF 

Kimberly Glass, GC Yuan 

PPI0 Co-regulation0 

Network1 

Responsibility Availability 

Network0 

TF-Motif Scan 

Co-regulation1 PPI1 

Glass	
  et.	
  al.	
  “Passing	
  Messages	
  Between	
  Biological	
  Networks	
  to	
  Refine	
  Predicted	
  Interac/ons.”	
  	
  PLoS	
  One.	
  2013	
  May	
  31;8(5):e64832.	
  
Code	
  and	
  related	
  material	
  available	
  on	
  sourceforge:	
  hWp://sourceforge.net/projects/panda-­‐net/	
  

Message-Passing Networks: PANDA 
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Subtypes of Ovarian Cancer 

Kimberly Glass, GC Yuan 

G
en

es
 

Condition
s 

Expression data 
(Angiogenic) 

G
en

es
 

Condition
s 

Expression data 
(Non-angiogenic) 

C
om

pare/Identify D
ifferences 

Network for 
Angiogenic Subtype 

Network for 
Non-angiogenic Subtype 

PANDA: Integrative Network Models 
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Kimberly Glass, GC Yuan 

Kimberly Glass, GC Yuan 
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Kimberly Glass, GC Yuan 

Inner ring: key TFs 
Colored by Edge 
Enrichment (A or N) 
 
Outer ring: genes 
Colored by Differential 
Expression (A or N) 
 
Interring Connections 
Colored by 
Subnetwork (A or N) 
 
Ticks – genes 
annotated to 
“angiogenesis” in GO, 
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TF1 TF2 sig. # Class 
ARID3A PRRX2 1.16E-23 244 A+ 
ARID3A SOX5 1.01E-14 155 A+ 
PRRX2 SOX5 3.83E-12 157 A+ 
ARNT MZF1 5.83E-23 92 N- 
AHR ARNT 6.13E-16 382 N- 
ETS1 MZF1 9.08E-16 148 N- 

C
o-regulatory 

TF Pairs 

Complex Regulatory Patterns Emerge 

Kimberly Glass, GC Yuan 

Kimberly Glass, GC Yuan 

Regulatory Patterns suggest Therapies 
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More application papers coming…. 

•   The goal of an experiment is to discover new biology 

•  The challenge is sorting through lots of data 

•  Comparing groups of samples requires thorough 
annotation 

•  Making sense of the genes that are significant in such a 
comparison requires thorough gene annotation 

•  New technologies are giving us new ways of generating 
data, but the analysis approaches are more-or-less the 
same. 

At the End of the Day 
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The future is here.  
It's just not widely distributed yet. 
 

  - William Gibson 

Before I came here I was confused  
about this subject.  

After listening to your lecture,  
I am still confused but at a higher level.  

 
- Enrico Fermi, (1901-1954) 


