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Every revolution in science — from
Copernican heliocentric model to the
rise of statistical and quantum
mechanics, from Darwin’s theory of
evolution and natural selection to the
theory of the gene — has been driven by
one and only one thing: access to data.

-John Quackenbush
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@johnquackenbush-Every revolution in
the history science has been driven by
one and only one thing: access to data.

Twitter version, 115 characters with spaces

A Brief History of
Expression Analysis
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February 2001: Completion of the Draft Human Genome
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The Genome Project has provided a “parts list”
for a human cell
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Different cell types express different sets of genes
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Northern Blots:
Before the Dawn of Time

(A) DNA is cleaved; electrophoresis (B) DNA fragments are blotted (C) Filter is exposed (D) Filter is exposed to
is used to separate DNA onto nitrocellulose filter to radioactive probe photographic film;
film is developed

DNA restriction
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Buffer Absorbent  Nitrocellulose DNA fragments Probe hybridizes with Bands on x-ray
solution  paper filter transferred onto filter homologous DNA film created by
(invisible at this stage) fragments (still not visible) labeled probe

http://http://www.lookfordiagnosis.com/mesh_info.php?term=Blotting%2C+Northern&lang=1

Northern Blots
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» The size of the amplification product is the filter on the data
Quantitation requires normalization
* Normalization is based on assumptions

April 27, 2016

John Quackenbush, Ph.D.
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]
Quantitative RT-PCR:

The Ancient World

ORNL-DWG 91M-17476

DNA Amplification Using Polymerase Chain Reaclion
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Source: DNA Science, see Fig. 13.

PCR
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123456 7 8 9101112131415
Normal tissue samples

1234567 8910111213141
HNSCC tissues & cell lines
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10+
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Cycle no. Initial quantity (copies)

Paired samples HNSCC

» Paired hybridization of two primers is the filter on the data
* Quantitation requires normalization (comparison to standard curves)
* Normalization is based on assumptions

April 27, 2016

John Quackenbush, Ph.D.
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Large-scale Quantitative RT-PCR:
The Dawn of the Modern Age

Proc. Nadl_ Acad. Sci. USA
Vol 95, pp. 334-339, January 1998
Neurobiology

Large-scale temporal gene expression mapping of central
nervous system development

XILING WEN*, STEFANIE FUHRMAN®, GEORGE S. MICHAELST, DANIEL B. CARRYT, SUSAN SMITH*,
JEFFERY L. BARKER®, AND ROLAND SoMOGYI*$

*Laboratory of Neurophysiclogy. National Insttute of Neurological Disorders and Stroke, Natiosal Institstes of Health, Bethesda, MD 20892; and Mnstitste for
Computational Scicnces and Informatics, George Mason Universiy, Fairfax, VA 22030

Edited by Joshua Lederbery, The Rockefeller Universicy, New York, NY, and approved November 7, 1097 (received for review June 25, 1997)
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Beyond qRT-PCR: Microarrays
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Spatial position is the filter on the data.
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Assemble transcripts
from spliced alignments
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Beyond Microarrays: RNA-seq
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Experimental
Overview

Expression Analysis Pipeline: Microarrays

Design and perform experiment

Ii

Biological interpretation

11
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Design the
Experiment

]
Why Design an Experiment?

» The goal of an experiment dictates
everything from how the samples are
collected to how the data are generated

» The design of the analytical protocol should

be reflected in the design

— Do we have enough replicates?

— Do we have sufficient controls?

— Do we collect samples and data to avoid
confounding and batch effects?

April 27, 2016

John Quackenbush, Ph.D.
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Basis of Experimental Design

* In biology, “traditional” approaches to inquiry involved
hypothesis testing.
*  We identify a problem and postulate a mechanism
*  We design an experiment in which we perturb the system and then
look for changes
* The response of the system either validates or invalidates our
hypothesis

* In these types of experiments, we attempt to tightly control
the variables so as to carefully measure the influence of
these, perturbing a single parameter at a time

* Good experimental design requires sufficient replication to
estimate the effects we wish to measure

Basis of Experimental Design

+ Functional genomics technologies have dramatically
changed the way in which we approach biological

questions

*  We can now survey the responses of thousands of genes,
proteins, or metabolites in a particular system and look for patterns
of expression

* These “hypothesis generating” experiments do not (necessarily)
require a mechanistic hypothesis ahead of time

* However, this does not mean we do not have to carefully design
our experiment and analyze the data

* Here, we attempt to control the variables so as to carefully
measure the influence of these, perturbing a single
parameter at a time

» Good experimental design requires sufficient replication to
estimate the effects we wish to measure

April 27, 2016

John Quackenbush, Ph.D.
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Types of Experiments

* Class Comparison

tumor and normal?
* Class Discovery

subsets that are biologically meaningful?
+ Classification

unknown sample to one of the classes?
» Large-scale Functional Studies

distinction between classes?

used for multiple purposes

+ Can | find genes that distinguish between two classes, such as

» Given what | think is a uniform group of samples, can | find

» Given a set of samples in different classes, can | assign a new,

e Can | discover a causative mechanism associated with the

These are often not completely distinct and a single dataset can often be

Normalization

14
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]
Why Normalize Data?

» The goal of normalization is to remove
systematic variation from the data and
scale it so that comparisons can be made
across studies

RMA Background correction

- Expression= Background (N(0,02) + Signal (Exp(c.))

April 27, 2016

John Quackenbush, Ph.D.
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]
RMA Normalization

- Force the empirical distribution of probe intensities to be
the same for every chip in an experiment

- The common distribution is obtained by averaging each
quantile across chips:

Quantile Normalization

One distribution for all arrays:
the black curve

Density of PM probe intensities for Spike-In chips

—— Alter Quantile Normalization

log(PM)

16
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RMA: Probe set summary

- Robustly fit a two-way model yielding an estimate of
log,(signal) for each probe set
- Fit may be by
- median polish (quick) or by
- Mestimation (slower but yields standard errors and good quality
- RMA reduces variability without loosing the ability to

detect differential expression

RMA: Before and After

Boxplot and histogram of signal
intensities before RMA pre-processing

Boxplot and histogram of signal
after RMA pre-p| ing|

Vi

http://www.slideshare.net/wjiessen/covance-talk

17
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Ratio-Intensity: Before

18
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Normalization

- There are many, many methods
- All attempt to do the same thing, but all have their own
assumptions that may or may not be violated

- RMA is widely accepted as the standard for microarrays
- There is less consensus on what works best for RNA-seq

- We constantly have to test our assumptions, even with
normalization

GTEx: Complex data requires complex methods

Raw expression

@ brain-0

0.15

0.10

Density

0.05

0.00

Log-transformed counts

April 27, 2016

John Quackenbush, Ph.D.
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Clustering:
Finding Patterns

Hierarchical Clustering
1. Calculate the distance between all genes. Find the smallest distance.
If several pairs share the same similarity, use a predetermined rule
to decide between alternatives.

2. Fuse the two selected clusters to produce a new cluster that now
contains at least two objects. Calculate the distance between the
new cluster and all other clusters.

3. Repeat steps 1 and 2 until only a single cluster remains.

4. Draw a tree representing the results.

@R ®®®

20
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Hierarchical Clustering

g1 is most like g8

W @ e

g4 is most like {g1, g8}

:;1.....

April 27, 2016
John Quackenbush, Ph.D.

(HCL2)

Hierarchical Clustering

:;1.....

95 is most like g7

5:100630

iiliiooo

{g5 g7} is most like {g1, g4, g8}

(HCL3)
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Hierarchical Clustering

P

oo

(HCL4)

Agglomerative Linkage Methods

Linkage methods are rules or metrics that return a value
that can be used to determine which elements (clusters)

should be linked.
Three linkage methods that are commonly used are:
« Single Linkage

* Average Linkage
+ Complete Linkage

(HCL6)

April 27, 2016

John Quackenbush, Ph.D.
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Single Linkage

Cluster-to-cluster distance is defined as the minimum
distance between members of one cluster and
members of the another cluster. Single linkage tends to
create ‘elongated’ clusters with individual genes chained
onto clusters.

D ,p = min ( d(u, V) )

whereue AandveEB
foralli=1toN, andj=1 to Ny

(HCL?)

Average Linkage

Cluster-to-cluster distance is defined as the average
distance between all members of one cluster and all
members of another cluster. Average linkage has a slight
tendency to produce clusters of similar variance.

Dup = 1/(NyNp) Z Z (d(u; Vi)

whereu€E AandvEB
foralli=1toN, andj=1to Ny

@ DAB

(HCLRB)
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]
Complete Linkage

Cluster-to-cluster distance is defined as the maximum
distance between members of one cluster and members
of the another cluster. Complete linkage tends to create
clusters of similar size and variability.

D,p =max (d(u;, v) )

whereu€ Aandv EB
foralli=1toN, andj=1 to Ny

° ®

® o0 D o0
AB

oo o

(HCL9)

Comparison of Linkage Methods

Complete

April 27, 2016

John Quackenbush, Ph.D.
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K-means/K-medians Clustering (KMC)

1. Specify number of clusters, e.g., 5.

2. Randomly assign genes to clusters.

O o0 0 o
OOOooo

O O o

KMC, continued

3. Calculate mean / median expression profile of each cluster.

4. Select a gene and move it to the cluster having the closest
mean profile.

5. If the gene is shifted to a new cluster, recalculate means for the winning
and losing clusters.

6. Repeat steps 4 and 5 until genes cannot be shuffled around any more,
OR a userspecified number of iterations has been reached.

kmeans is most useful when the user has an a priori hypothesis about the
number of clusters the genes should belong to.

25
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Finding Differentially
Expressed Genes

Lies, Damn Lies, and
Statistics

Finding Significant Genes
t-test for each gene
» Tests whether the difference between the mean of
the query and reference groups are the same
+ Essentially measures signal-to-noise
» Calculate p-value (permutations or distributions)
» May suffer from intensity-dependent effects

t = signal = difference between means = <Xqg> — <Xc>
noise variability of groups SE(XgXc)

(Xg) - {Xe)

[ =

26
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t-tests
A significant
difference

—
1
Probably | |
not I

I

Schematic of the major components that are central to any limma analysis.

limma: The standard for microarray analysis

——— . | Advanced statistical
atrix of expression values : e i
(from RNA-seq / microarray) algorlthms in limma
[ GenelD [CSKTTSKZ[CUPA[CWF 2 thafa[low
ok x . 45
—— e . Borrowing
Sm—— limma delivers
/f/""\\ powerful inference
Gene-wise ( Qv‘::;"’h“f"‘ \ for differential
) = ighting i ;
ncaw 2ol yg) =X ﬁg \\m i express:uon analysis
models 5 sz *
= 8"
var(y,) =0, /w, .

Estimated gene-specific
parameters used for gene
prioritization and gene set

© The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

oD testing
Data N\
@re-processing»
Matthew E. Ritchie et al. Nucl. Acids Res. 2015;nar.gkv007 Nucleic ACidS R d‘
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Biological Interpretation

What do the genes in
this list do?

Tell me a story, Grampa

[
Biological Interpretation

- An obvious way to gain biological insight is to
assess the differentially expressed genes in
terms of their known function(s)

- Requires an automated and objective
(statistical) approach

- Functional profiling or pathway analysis

28
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Early functional analyses

- Manually annotate list of differentially expressed
(DE) genes

- Extremely time-consuming, not systematic, user-
dependent

- Group together genes with similar function

- Conclude functional categories with most DE
genes important in disease/condition under study

-BUT... it may not be the right conclusion

- This is what we call “Biopoetry.”

GO and functional analysis

Functional category Number of sig genes

Immune response 40
s | Metabolism 20
e i TranScription 20
sroenwmme | Energy production 10
Neurotransmission 5
Protein transport 5
TOTAL 100

Immune response category contains 40% of all
significant genes - by far the largest category.

Reasonable to conclude that immune response may be
important in the condition being studied?

29
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However ...

- Need to consider not only the number of
significant genes for each category, but also
total number on the array

- What if 40% of the genes on the array were
involved in immune response?

- Only detected as many significant immune
response genes as expected by chance

Same example, relative to background

Expected number of significant genes for category X is
(num sig genes =+ total genes on array)*(num genes in category X on array)

Functional Number of genes Observed number of Expected number of
category on array significant genes significant genes
Immune response 8000 40 40
Metabolism 4000 20 20
Transcription " 2000 10 10

Energy production 4000 30 20
Neurotransmission 200 5 1

Protein transport 1800 5 9

ALL 20000 100

30
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Same example, relative to background

were observed than expected by chance

Functional Number of genes Observed number of Expected number of
category on array significant genes significant genes
Immune response 8000 40 40
Metabolism 4000 20 20
Transcription d 2000 10 10

Energy production 4000 30 20
Neurotransmission 200 5 1

Protein transport 1800 5 9

ALL 20000 100

* Now, energy production and neurotransmission categories
appear more interesting as many more significant genes

* Largest categories are not necessarily the most interesting!

A at by dure to use DAVID!

‘Welcome to DAVID 6.7

20032016 © What's Important in DAVID?

The Database for Annotation, Visualization and
is an update to the

ted gene groups DAVID Bioinformatic Resources Ci

& Cluster redundant ann
& Visualize genes on BioCarta & KEGG pathway

iatons
w5t

e

& Display related many-genes-to-many-terms on 2-D

& Search for other functionally related genes not in the
list

 List nteracing protens

: I
o lmm ] | I
cdice s

' 2005 06 2007 08 2009 10 201112 2013 14 2015,

21,000 Citations
© Average Daily Usage: ~2,600 gene
200

. ge Annval Usage: ~1,000,000 gene.
lists/sublists from 5,000 research insfitutes
world-wide

mador @) R e @ Fmgor (gmees

Term of Service | Contact Us | Site Map

https://david.ncifcrf.gov/
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Gene Set Enrichment Analysis

overview

Gene Set Enrichment Analysis (GSEA) is a computational method that
determines whether an 3 priori defined set of genes shows statistically
significant, concordant differences between two biological states

(=.0. phenotypes).

Enriched Sets

From this web site, you can:

* Download the GSEA software and additional resources to analyze,
annotate and interpret enrichment results.

* Explore the Molecular Signatures Database (MSigDB), 2 collection
of annotated gene sets for use with GSEA software.

View documentation describing GSEA and MSigDB. e

What's New
29-Feb-2016: The Sunday 26-Feb-2016 maintenance is complete on the Bepistration)
(GSEA/MSIGDS website. Thanks for your patience! Please register to download the GSEA software and view the MSIgDB gene
133an-2016: Version 5.1 ofthe Molecular Signatures Database (MSigDB) is  Sor A" registering, vou can log i at any time using your email address,
now avalable. It includes the addition of 2,962 gene sefs to the C7 collection -0 1 1= (72" 115 only purpose i fo Relp s track usage for reporis to
of immunologic signatures, as well as a number of updates and corrections,  °" ["4"9 a9eneies.
See the Release Notes for details.

Contributors.
23-Dec-2015: Our paper describing the generation of the Hallmarks

collection and examples of its use for GSEA was published in Cell Systems.  Oocry 27 MSI9DB are maintained by the GSEA team with the support of our

MSigD8 Scientific Advisory Board. Our thanks to our many contributors.
Funded by: National Cancer Institute, National Institutes of Health, National
Institute of General Medical Sciences.

R

Citing GSEA|

10-Dec-2015: We have confirmed that GSEA v2.2.0 and newer are
compatible with Java & and produce equivalent results. Its use is highly
recommended.

Version 5.0 of the Database (MSigDB) is
now availabl. It includes a new collection (H) of 50 hallmark signatures and
a number of other additions and updates. See the HSIDE v5.0 Release
Notes for details To cite your use of the GSEA software, please reference Subramanian,
Tamayo, et al. (2005, PNAS 102, 15545-15550) and Mootha, Lindgren, et al.

10-Jun-2014: In collaboration with the Bader Lab at the University of (2003, ok Genet 34, 267-273).

Toronto, we have added Enrichment Map visualizations s one of the steps in
EA analysis. See the GSEA v2.1.0 Release Notes for details.

http://software.broadinstitute.org/gsea/index.jsp

Gene Ontology

® coertmemmm | -+ |crrrme Gmme tovme Emmme Ghe Cme G

Search GO data  3ene Ontology Consortium Q

51v] ]

Highlighted GO
term
The G0G ha ecenty e a new

Enrichment
analysis

stage during which biologcal processes.

biologica process. [l S sg-:n more
Homo sapiens 5| P 0 B e et G s sorcgmne Random FAQs

« Wnat s e bestway o Ink o
Anico?

« Sometimes he number of GO
Poverean; POTHER

) annotaionscranges sgnicanty
- What is the Gene Ontology? overasorperadcr e, w2
S'a“S“CS‘ « Annroducton o tre Gene Ontooay RS
; llll

 What are annotatons? Accession Numbers n batch?
« Ten quick s or using the Gene Oniolgy [ZTZZZTA

« Gene Ontoogy toos ViewailFacs
« Envichment anaysis
« Downloads — v

Recent news

Take the Gene Ortoiogy Survey!

Post dale. 1012772015 - 15.45

Cardlovascuiar Gene Annotaton Newsleter November 2015

Postdate: 11012015 - 1220

Parkinson's Gene Annotalion Project Newsletter October 2015
5-01

inor change informating of Gene Association Fils (GAF)

Post date: 08/262015 - 15

Carciovaseuar Gene Annotalin Newsetier Augusi 2015

Post date: 0810372015 - 0240

Tage: navgaion
User story: Everybocy

Copyrght1899-2015  Gane Ontlogy (CC-8Y40)
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tlanatsbuton Toms ofuse+RSS
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RachaDrsdiet a
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KEGG pathway database

KEGG  ~ Adipocytokine signaling pathway Help

» Japanese
KEGG Home KEGG: Kyoto Encyclopedia of Genes and Genomes
Release notes
Current statistics . X
KEGG is a database resource for understanding high-level functions and
Plea from KEGG
utilties of the biological system, such as the cell, the organism and the
KEGG Database ecosystem, from molecular-level information, especially large-scale molecular
KEGG overview datasets generated by genome sequencing and other high-throughput
Searching KEGG ie:;zr;;ne)ﬂtal technologies (See Release notes for new and updated
KEGG mapping
Please see: Renewed plea to support KEGG
Color codes ? PP
KecCORec New service
BIastOALA for genome/metagenome annotation is now available. more ...
Pathway maps
Brite hierarchies
KEGG - © Main entry point to the KEGG web service
KegTools KEGG2 KEGG Table of Contents  Update notes
KEGG API © Data-oriented entry points
KGHE KEGG PATHWAY  KEGG pathway maps [Pathway list]
KEGG FTP KEGG BRITE BRITE functional hierarchies [rite list]
Subscription KEGG MODULE  KEGG modules [Module list | Statistics] fiew’
KEGG ORTHOLOGY Ortholog groups  [KO system | Annotation]
GenomeNet KEGG GENOME  Genomes [KEGG organisms]
e KEGG GENES Genes and proteins _ [Release history)
KEGG COMPOUND Small molecules [Compound dassification]
Feedback KEGG REACTION  Biochemical reactions  [Reaction modules]
KEGG DISEASE  Human diseases [Cancer | Infectious disease]
Kanehisa Labs KEGG DRUG Drugs [ATC drug dlassification]
KEGG MEDICUS  Health information resource [Drug labels search]
© Organism-specific entry points
KEGG Organisms  Enter org code(s) [0 ] hsa hsaeco
© Analysis tools
KEGG Mapper  KEGG PATHWAY/BRITE/MODULE mapping tools
KEGG Atlas Navigation tool to explore KEGG global maps
BIastKOALA e/ New service for genome/metagenome annotation
BLAST/FASTA  Sequence similarity search
sMcomp Chemical structure similarity search

Copyright 1995-2014 Kanehisa Laboratories

WikiPathways

[ page | [dscusson ] [ vew seurcs | [ atory |

& Login/ create account

o | Today's Featured Pathway

%’I"IGI:;I ,l,,* W,,!c"{ks ys is an open, publi dedicated to the of biological pathways by and for Principle Pathways of Carbon Metabolism (Saccharomyces
“:’ athways... cerevisiae)

sear =

navigation

pathway
u Create

= Browse
 Wish List
= Downoad
= Web service APl

overview

You can search by:
« Pathway name (Apoptosis)
= Gene or protein name (553)
= Any page content (cancer)

= Most Viewed
= MostEdted

= New Pathwiays
= Statistcs

community

= Aboutus.
= Contactus

Princile Pathways of Carbon Metabolism

Latest discussions.

Today
5 Data node types (1) by Martina Kutmon
13 November 2014

Add a pathway to the wish list

Create a new pathway
page

= Micronutrient portal
= NetPath portal

= Development

4 November 2014
& Dthreo-isocitrate (1) by Charles H. Bennett
more

| Forum

| Sample Pathway Pages |

Sandbox Check out the following pages:

= Show recent changes

= Show new pathways more.. @

toolbox

= Relsied changes.
= Upload fie:

= Show most edited pathways ‘ Activity
= Show most viewed pathways
- Show pathay wish list = Check out the WikiPathways poster presented at ISMB 2014
= Selected publications using WikiPathways @ LA AT

= Interactive oathwav viewer. {rv it herel
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]
Pathway Commons

For biologists

Search,vi

gL

coo

6 3
ez
9

Simple
Seegenesin pathway context

BT T

Analyze

CyPath2

For computational biologists and software developers

D¢ inBioPAX_ SIF and other f for pathway
Commons using our web service API (mor)

BE Y @

Pathway

PC: Previous web

- —— PC2: Web service BioPAX & Paxtools PaxtoolsR ervice)
g BioPAX Level 3. Advanced i
= = Obsolete,

graph queries. Programmatic Biologic nee y

= handling data in BIoPAX.

oo EBROAR

= MsigDB

E- | Molecular signatures Molecular Signatures Database v4.0

overview Callections

7 major collecsons:

positional gene sets for xch human

e
CZ databases, publications in PubMed, and knowledge
G

€3 ot aene sets boeedon conerved
o e human, o, r, and 9 genoms.
<omputatonal gene sets defed o mnine
c4 large collections of cancer-oriented microarray
e

e
ametated gene sets for use with GSEA software. From this
web st you can

+ Search for gene sets by keyword.

* Browse gene ses by name or cllcton.

* Examine a gene set and s annctatons. Ses, for
exampl, the ANGIOGENESTS gene set poge.

* Download gene set.
* Tnvestigate gene sets

22ts in Mgoe,

* View the expression profile o 3 gene set i any of
the three provided publc expression compenda.

Registration

Ploace register to dowrload the GSEA software and view the
regtering,

€5 Sogeneacs corot ot eres sty v

ime using your

1 2de oy
purpose s to help us rack usage or reports t our funding

Current Version

VSigoB database v&.0 updated May 31, 2013, Release notes.
(GSEAINSIGOS wab ste vi.05 released June 8, 2014

Contributors.
the support

oz e o
C6 microarray gene expression data from cancer gene.
it

s e
C7 microarray gene expression data from immunologic.
pr

of our MSi0DB Scentiic Advsory Bosrd. We also welcome.
‘and appraciate contribuions o this shared resource and
‘encourage users to submt thei gene sets o
genesetaBbrosdinstiute.org. Our thanks o our many
Contrbutors,

ied by: Notionsl Cancer Instute, Notions!Instiutes o
Healh National Insit of General Medical Sdiences.

o cite your use of the Nolecular Signatures Database.
(45igD8), please rference Subramanian, Tamayo, et 3l
(2005, PHAS 102, 15545-15550) and slso the source for the
gene set s isted on the gene set pay

contact us

1 you have comments or questons, please contac us:
gseabroadintite.ors.
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Biological Networks

Can we make this more
complicated?

How NOT to do Network Analysis

Conditions
7]
[
3
[0 - Add Protein-Protein
. Interaction Network
Expression data

(Phenotype I)

TEEE3

AILAL
i;f“+ \\/, >

Statistical

Comparison a

R

. .
Conditions . Color and Start
Differentially Bio-Poetry
Expressed
Genes
Expression data + Should things that are differentially

(Phenotype II) expressed be connected?

* Is the PPl network even “relevant”?
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Correlation

Network ¥ <9

Conditions

Genes

Expression data
(Phenotype I)

Statistical “re
Analysis “ttest”
Conditions

Expression data
(Phenotype II)

Differentially
Expressed .
Genes

How NOT to do Network Analysis (2)

Color and Start
Bio-Poetry

» Are things that are correlated
functionally connected?

Are correlations the same in
different phenotypes?

Conditions

Genes
oo e
*
.
A J

Expression data
(Phenotype I)

Infer
phenotype-specific
network

Conditions Teptlttrraa,
o—( —e
@ . .
2 9 K
c s ’.’
Expression data :
(Phenotype Il) ' }'
Infer
phenotype-specific
network

How we do Network Analysis

Analyze Network
Topology
and Structure

= o
™ &5 &

Compare Network
Topologies
\

Simultaneously
compare differential
structure
and expression
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Starting Assumptions
There is no single “right” network

The structure of the network matters and network
structure often changes between states.

We have to move from asking “Is the network right?”
to asking “Is the network useful?”

The real question is “Does a network model inform our
understanding of biology?”

Modeling Gene Regulatory
Networks

April 27, 2016

John Quackenbush, Ph.D.
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Integrative Network Inference:
PANDA

OPEN @ ACCESS Freely available online @ PLOS | ONE

Passing Messages between Biological Networks to Refine
Predicted Interactions

Kimberly Glass'?, Curtis Huttenhower?, John Quackenbush'?, Guo-Cheng Yuan"**

1D of Bic istics and C i Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 2 Department of Biostatistics,
Harvard School of Public Health, Boston, Massachusetts, United States of America

Abstract

Regulatory network re:onmucuon is 2 fund. | P in putational biology. There are significant limitations to

such reconstruction using div d and increasingly people attempt to construct networks using multiple,
dent d. ined from compl y sources, | but memods for this mnegrauon are lackmg. We developed

PANDA (Passing Attributes b Ne rks for Data Assi a ge-passing model using multiple sources of
ion to predict I lationships, and used it to integrate protem-pro!em interaction, gene expression, and

sequence motif data to reconstruc! ide, ¢ pecific ks in yeast as a model. The resulting

networks were not only more accurate than those produced uslng individual dala sets and other existing methods, but they
also captured information regarding specific biological mechanisms and pathways that were missed using other
methodologies. PANDA is scalable to higher eukaryotes, applicable to specuﬁc tissue or cell type data and conceptually
generallzableto include a variety of regulatory, i mteracuon, Xp and other scale data. An implementation of
the PANDA algorithm is available at www sourcef projects/pand

Regulation of Transcription

regulatory
sequences promoter
general
) transcription gene
gene regulatory proteins factors RNA polymerase Il r:?:::::;v

regulatory
sequence

spacer DNA promoter

T RNA transcript

the gene control region for gene X

Specific transcription factors
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]
A Simple Idea: Message Passing

Transcription Factor
O The TF is Responsible for
communicating with its Target
R f;t) = kAl V0 AD Tk Crs ALY

Downstream Target

The Target must be Available
to respond to the TF

® _ (e-1) (0 / E (0)
Aij —ZRW CujRay R
3 3

Kimberly Glass, GC Yuan

Message-Passing Networks: PANDA

TF-Motif Scan %

?D PPI, Network, Co-regulation,

Responsibility Availability

PP, € Network, fe==—==p Co-regulation,

Glass et. al. “Passing Messages Between Biological Networks to Refine Predicted Interactions.” PLoS One. 2013 May 31;8(5):e64832.
Code and related material available on sourceforge: http://sourceforge.net/projects/panda-net/
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Subtypes of Ovarian Cancer

OPEN a ACCESS Freely available online @ PIOS one

Angiogenic mRNA and microRNA Gene Expression
Signature Predicts a Novel Subtype of Serous Ovarian
Cancer

Stefan Bentink"®®, Benjamin Haibe-Kains'®, Thomas Risch', Jian-Bing Fan? Michelle S. Hirsch*?,
Kristina Holton', Renee Rubio', Craig April?, Jing Chen?, Eliza Wickham-Garcia®, Joyce Liu*’, Aedin
Culhane®, Ronny Drapkin®®7, John Quackenbush'2%*Y, Ursula A. Matulonis®>”"

1 Dep of Bi istics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 2 Department of Cancer Biology,
Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America, 3 Illumina, Inc., San Diego, California, United States of America, 4 Department of Pathology,
Division of Woman's and Perinatal Pathology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America, 5 Department of Medical Oncology, Dana-
Farber Cancer Institute, Boston, Massachusetts, United States of America, 6 Harvard School of Public Health, Boston, Massachusetts, United States of America, 7 Harvard
Medical School, Boston, Massachusetts, United States of America

Abstract

Ovarian cancer is the fifth leading cause of cancer death for women in the U.S. and the seventh most fatal worldwide.
Although ovarian cancer is notable for its initial sensitivity to platinum-based therapies, the vast majority of patients
eventually develop recurrent cancer and succumb to increasingly platinum-resistant disease. Modem, targeted cancer drugs
intervene in cell signaling, and identifying key disease mechanisms and pathways would greatly advance our treatment
abilities. In order to shed light on the molecular diversity of ovarian cancer, we performed comprehensive transcriptional

nrafilina an 120 aduanced ctana hinh arads carniic avarian rancare Wa imnlamontad a racamnlina hacad varcinn af tha

PANDA: Integrative Network Models

Condition

] Network for
Angiogenic Subtype
S T

Expression data
(Angiogenic)

Motif Data

(O®)
Network for
Non-angiogenic Subtype

Interaction Data

S
d“‘ l' e ’

Condition
Expression data
(Non-angiogenic)

saouatayiqg Ayyuapy/eredwo)

Genes

.~ brly Glass, GC Yuan
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Inner ring: key TFs
Colored by Edge
Enrichment (A or N)

Outer ring: genes
Colored by Differential
Expression (A or N)

Interring Connections
Colored by
Subnetwork (A or N)

Ticks — genes
annotated to
“angiogenesis” in GO,
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Complex Regulatory Patterns Emerge

TF1 TF2 sig. # Class
ARID3A PRRX2 1.16E-23 244 A+
ARID3A SOX5 1.01E-14 155 A+
PRRX2 SOX5 3.83E-12 157 A+
ARNT MZF1 5.83E-23 92 N-
AHR ARNT 6.13E-16 382 N-
ETS1 MZF1 9.08E-16 148 N-

sied 41
Kioyenbais-0p

Kimberly Glass, GC Yuan

Regulatory Patterns suggest Therapies

ANGIOGENIC BEHAVIOR

“ VEGF production
.:. and angiogenesis

I E—

High levels of CpG methylation

TREATMENT MODEL
(1) Prevent ARNT/HIF1a and (3) Decrease genome-
ETS1/HIF2a dimerization wide methylation

(2) Promote ARNT/AHR and

ETS1/AHR dimerization

rKimberIy Glass, GC Yuan |
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Glass et al. BMC Bioinformatics (2015) 16:115
DOI 10.1186/512859-015-0551-y

(o

RESEARCH ARTICLE

A network mod
ovarian cancer

Kimberly Glass'**, John Quackenbu:

Abstract

Background: We recently identified
involved in angiogenesis, with signi
mechanisms that distinguish the sul
model information flow in gene req
Results: We find distinct difference
subtypes, largely defined by a set of
angiogenesis, are not strongly differ
these factors are involved in the act]
differential expression of their netw
previously unrecognized pro-angiog
of combinatorial regulation.
Conclusions: The models we develf
networks away from the genes ther|
between subtypes suggest therape:

Keywords: Network modeling, Gen|
Angiogenesis

Glass et al. BMC Systems Biology 2014, 8:118

httpy//www.blomedcentral com/1752-0509/8/118 6’; c

Systems Biology

RESEARCH ARTICLE Open Access

Sexually-dimorphic targeting of functionally-
related genes in COPD

Kimberly Glass"**", John Quackenbush'*, Edwin K Silverman®*, Bartolome Celli*, Stephen | Rennard®,
Guo-Cheng Yuan'? and Dawn L DeMeo™

Abstract

Background: There is growing evidence that many diseases develop, progress, and respond to therapy differently
in men and women. This variability may manifest as a result of sex-specific structures in gene regulatory networks
that influence how those networks operate. However, there are few methods to identify and characterize differences in
network structure, slowing progress in understanding mechanisms driving sexual dimorphism.

Results: Here we apply an integrative network inference method, PANDA (Passing Attributes between Networks for
Data Assimilation), to model sex-specific networks in blood and sputum samples from subjects with Chronic Obstructive
Pulmonary Disease (COPD). We used a jack-knifing approach to build an ensemble of likely networks for each sex. By
adapting statistical methods to compare these network ensembles, we were able to identify strong differential-
targeting patterns associated with functionally-related sets of genes, including those involved in mitochondrial
function and energy metabolism. Network analysis also identified several potential sex- and disease-specific
transcriptional regulators of these pathways.

Conclusions: Network analysis yielded insight into potential mechanisms driving sexual dimorphism in COPD that
were not evident from gene expression analysis alone. We believe our ensemble approach to network analysis
provides a principled way to capture sex-specific regulatory relationships and could be applied to identify differences
in gene regulatory pattems in a wide variety of diseases and contexts.

Network modeling, Gene regulation, Regulatory networks, Sexual-dimorphism, Chronic Obstructive Lung

Disease

April 27, 2016

John Quackenbush, Ph.D.

More application papers coming....

]
At the End of the Day

The goal of an experiment is to discover new biology

» The challenge is sorting through lots of data

» Comparing groups of samples requires thorough

annotation

» Making sense of the genes that are significant in such a
comparison requires thorough gene annotation

* New technologies are giving us new ways of generating
data, but the analysis approaches are more-or-less the

same.
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The future is here.
It's just not widely distributed yet.

- William Gibson

Before | came here | was confused
about this subject.
After listening to your lecture,
| am still confused but at a higher level.

- Enrico Fermi, (1901-1954)
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