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Complex diseases & traits
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gene function

Genome-wide association studies

» Test a large portion of the common
single nucleotide genetic variation in the
genome for association with a disease
or variation in a quantitative trait

* Find disease/quantitative trait-related
variants without a prior hypothesis of

Effect size /\
50.0
Rare alleles
causing
Mendelian
3.0 disease
Intermediate
1.5

Rare variants of
small effect
very hard to identify
by genetic means

N

—

Genetic architecture

Few examples of
high-effect
common variants
- influencing
.. common disease
Low-frequency
variants with
intermediate effect

0‘001 e Low

Allele frequency
Manolio (2009) Nature 46: 747
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Genome-wide association studies identify loci

Filter the
diagram A

Filter by trait

Clear

Apply

Show SNPs for

Copyright © EMBL-EBI 2015 | EMBL-EBI is an Outstation of the European Molecular Biology Laboratory | Privacy | Cookies | Terms of use

& cwas catalog Home  Search  Diagram ut  EMBL-EBI [ =
GWAS / Diagram This diagram shows all SNP-trait associations with p-value < 5.0 x 10, published in the GWAS Catalog

Download diagram &

https://www.ebi.ac.uk/gwas/diagram Welter (2014) Nuc Acids Res 42; D1001

Outline

— Samples/study participants

— Genotyping

— Tests of association

— Imputation and meta-analysis
* Interpretation of results

— Effect size and significance

— Example locus characteristics

» Sequencing/rare variant studies

« Genome-wide association study design
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Study designs

Population-based cohort

time l >
Enroll subjects regardless of health or disease

Prospective cohort

time 5
Enroll subjects; measure X,Y,Z over time, wait for disease onset
Case-control l
time
AN What happened Identify/enroll
~~~~~~ prior to disease onset? cases and controls

-
-
‘‘‘‘‘‘
~o, -
~~~~~
~. -
____________

Matching of cases and controls

Cases Controls

Cases and controls should be comparable in
all respects except disease status
(e.g. age, sex, demographics)
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Selection of cases

Cases * Potential criteria to enrich

. . . . genetic effect size

— More severely affected

B individuals
. . . . — Require other family
. . member to have disease
. . . — Younger age-of-disease
onset

Selection of controls

. Pot_ential crit_erion to Controls

e
rather tl_1an .

E:re]:llaet;on-based . .. . . .
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Comparable ancestry

Cases Controls

___ = S

f=ll =
;.u B
"l |

Ancestry differences

Cases Controls

.

By ll. _
B L _

May have inadequate ancestry information prior to genotyping
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Confounding and population stratification

Confounding Exposure of interest

Correlation,
not causal !
i Confounded
\iyassociation
True risk factor caa > Disease
Population stratification
. __Correlation, not causal .
Ethnicity < — Genotype of interest
) Correlation, ,
Correlatlon,I AVV ! Confounded
not causal i L
| association
v
True risk factor causa > Disease

Cancer Epidemiol Biomarkers Prev 11: 513

Population stratification

Systematic differences in allele frequencies
between subpopulations that may be due to
different ancestry

Oversampled individuals from one sub-
population for cases in a case-control
genetic association study can produce
spurious associations
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Account for or avoid population

stratification
. Match cases with controls
* Restrict to one subgroup

« Adjust for genetic background
E.g. Use principle components (PCs) to infer
ancestry from genotype data and adjust for PCs in
association analysis
 Family-based study design — genotype
relatives and analyze transmission of alleles
from heterozygous parents to offspring
Transmission disequilibrium test (TDT), family-
based association test (FBAT)

Genome-wide genotyping panels

* 10,000 - 5 million variants
« Affymetrix, lllumina
* Random SNPs
* Selected haplotype tag variants

* Copy number probes

* More lower frequency variants

* Exome variants

- Some arrays allow variants to be added
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a SNPs

b Haplotypes

¢ Tag SNPs

SNP SNP
v v
AACACGCCA.... TTCGGGGTC....

AACACGCCA.... TTCGAGGTC....
AACATGCCA.... TTCGGGGTC....
AACACGCCA.... TTCGGGGTC....

Haplotype 1

Selecting ‘haplotype tag’ SNPs

SNP

v

AGTCGACCG....
AGTCA ACCG....
AGTCA ACCG....
AGTCCACCG....

CTCAAAGTACGGTTCAGGCA

Haplotype2 TTGATTGCGCAACAGTAATA
Haplotype3 CCC|GATCTGTGATACTGGTG

Haplotype 4

O\ P <
O\ = <«
O\O |«

International HapMap Consortium (2003) Nature 426:789

lllumina Infinium Assay

Whole genome amplification
A NN NN

L Fragment DNA

BeadArray of capture probes

Hybridize unlabeled DNA to
specific arrays of 50-mers

Allele-specific primer extension with
labeled nucleotides

Bead type Two haptens/colors

captured
human

uman TR

A0

Dual-color florescent staining
Detect fluorescent color and intensity

lllumina.com and adapted from Gunderson (2005) NatGen 37:549
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Affymetrix Axiom Array

Target prep

Amplify

AVAVAVAVAVAVAVAVAVAVAVAN
AVAVAVAVAVAVAVAVAVAVAVAN

|

Fragment
N\ nr
VAV S aaVaVa Vs
NV AN SN

25-125 bp

Hybridization

Capture
30-mers

5

+

VAV AT A
VAV WA

Label
NN\ <
CAYAS
N\ o
N\ o

Labeled solution probe

Ligation

Differentiate

NS
>/\I\J

4
\NSONNINS

M
AVAVAY
AVAVAV)
\N\/\/
AVAVAVAV VS

Ligase closes the
gap between

capture and label
probe if complete

Signal amplification

Stain and image

Sy

\NSONNINS

.,
AN
A

VL
Y
\vvvﬁvx.

Stain to detect label

GeneTitan platform

Cocktail of labeled

9-mer oligos complementarity;

wash off others
Affymetrix.com

Global genomic coverage

Global coverage (%) by SNP chips

SNP chip CEU CHB+JPT YRI
SNP Array 5.0 64 66 41
SNP Array 6.0 83 84 62
HumanHap300 77 66 29
HumanHap550 87 83 50
HumanHap650Y 87 84 60
Human1M 93 92 68

Percent of SNPs present on the chip or tagged at r2>0.8 by at least
one SNP in the chip within 250 kb

Li (2008) EJHG 16:625
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Quality control:
Identify and remove bad samples

* Poor quality samples
— Sample success rate <95 %
— Excess heterozygous genotypes
« Sample switches
— Wrong sex
* Unexpected related individuals
— Pair-wise comparisons of genotype similarity
— Duplicates

* Ancestry different from the rest of sample

Quality control:
Identify and remove bad SNPs

» Genotyping success rate < 95%
 Different genotypes in duplicate samples

- Expected proportions of genotypes are not
consistent with observed allele frequencies

* Non-Mendelian inheritance in trios

 Differential missingness in cases and
controls

12
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Quality control:
Identify and remove bad SNPs

e f g
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Ideal genotyping plot Clusters mis-called  Clusters overlap

McCarthy (2008) Nat Rev Gen 9:356

Statistical analysis: linear regression

Two main parameters: p-value and effect size
Yy = Bo + B4X
Trait = B, + B,SNP,
Toe size = B, + B4rs123456

(=}

4.5+ o
g [+
4.0 °
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(2] o
o 8
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1
SNP genotype

AG GG

3
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Statistical analysis: linear regression

Two main parameters: p-value and effect size
y = Bo * P1X
Trait = g, + B4SNP,
Toe size = p, + p,rs123456

Toe size =, + B4rs123456 + B,sex + fage + f,age? + fsBMI
N4
o Assumptions covariates

— Trait is normally distributed for each genotype,
with a common variance

— Subjects independent (e.g. unrelated)

Odds ratio

+ Surrogate measure of effect of allele on risk
of developing disease

Allele A C Total
Case 860 1140 2000
Control | 1000 1000 2000
Total 1860 2140 4000

Odds of C allele given case status = Case C/Case A

Odds of C allele given control status = Control C / Control A

Odds Ratio= —_CaseC/CaseA _ 1140 / 860

= 1.
Control C/ ControlA 1000/1000 33

14
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Associati tudy odds ratio plot
Population groups References
Icelandic : - Helgason, Nat. Genet., 2007
Danish (2) H - Grant, Nat. Gexet., 2006
Danish (b) : . Helgason, Nat. Genet, 2007
Finnish (a) : - Scott, Diabetes, 2006
Finnish (b) : = Saxena, Diabetes, 2006
Swedish (a) H - Saxena, Diabetes, 2006
Swedish (b) ' - Mayans, Eur. J. Hum. Genet., 2007
Scandinavian o Saxena, Diabetes, 2006
Swedish/Finnish e Saxena, Diabetes, 2006
NORTHERN EUROPEANS (MAF=18-30%) ' -
Amish v B Damcott, Diabetes, 2006
Dutch H . van Vliet-Ostaptchouk, Diabetologia, 2007
European H - Humphries, J. Mol Med, 2006
English H 2 Groves, Diabetes, 2006
French H - Cauchi, Diabetes, 2006
German : - Marzi, Horm. Metab. Res., 2007
Polish H - Saxena, Diabetes, 2006
Austrian H - Cauchi, current study, 2007
Italian H * Melzer, BMC Med., 2006
IS (a) H - Grant, Nat. Genet,, 2006
US (b) : - Zhang, Diabetes, 2006
IOTHER CAUCASIANS (MAF=27-34%) H - l
Indian (a) g . Humphrics, J. Mol. Med. 2006
Indian (b) H o Chandak, Diabetologia, 2007
Japanese (a) - Horikoshi, Diabetologia, 2007
Japanese (b) i - Hayashi, Diabetologia, 2007
ll\sLL\'s (MAF=3-28%) { - 1
Moroccan H = Cauchi, current study, 2007
Afro-Caribbean * Humphries, J. Mol. Med., 2006
West-African ™ Helgason, Not. Genet., 2007
’.\ FRICANS (MAF=28-35%) - I
SUMMARY ’ 1.46[1.42-1.51] (P=5.4 x 10"'4)
r T T T T T T T T T 1
on 089 1 141 1.78 224
Odds Ratio (T2D) J Mol Med (2007) 85:777-782

Relationship between GWAS sample size
and power

100% —

80% —

5
3

8_ 60%

3

E 40% |
©

n i

20% —

0% -

1?1 I 1?2 I 1%3 1?4 1?5 1?7 ;
Odds ratio
Paria (2014) J Bone Joint Surg Am 96:€38
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Adjust for population structure:

genomic control

e With population structure, the
distribution of Cochran-
Armitage trend tests, genome-
wide, is inflated by a constant
multiplicative factor A.

e That factor can be estimated
from the association results
A = median(X2)/0.456.

¢ |Inflation factor A > 1 indicates
population structure, unknown
relatives or other errors.

¢ The tests of association can be
adjusted by this factor.
Xizadjusted=xi2/)\

Observed %°

Quantile- True associations?
quantile (Q-Q)
259 plot o ®
f’oo °©
..
20+ . ° o&@
Population ’/°
. @
outliers and/or %
154  structure?
10
%2 Statistics
57 e Unadjusted
© Adjusted
0 T T T T 1
5 10 15 20 25
Expected %2

Devlin & Roeder (1999) Biometrics 55:997;

Pearson (2008) JAMA 299:1335

‘Manhattan plot’

for HDL-cholesterol

Novel HDL loci
GWS HDL loci
GWAS, New for HDL

80+

60 -

404

-log,o p-value

. - ome

188,577 individuals from 60 studies, GWAS + metabochip variants

Chromosome

Global Lipids Genetics Consortium

13 14 15 16 17 1819202122

GLGC (2013) Nat Gen 45:1274
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Multiple testing

* Genotype and test > 300K — 5M SNPs

» Correct for the multiple tests

.05 P-value = 5x108
~1 million common SNPs

* Need large effect or large sample size

Imputation of ungenotyped

variants
Mu317k I | n o (I T T I T | I
Affy500k [ | nim oo |
Imputed munr Cormemn I DRt IR

Li (2009) Ann Rev Genomics Hum Genet 10:387
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Imputation
Observed genotypes

Observed Genotypes

Study
Sample

Reference Haplotypes

CGAGATCTCCTTCTTCTGTGC
CGAGATCTCCCGACCTCATGG
CCAAGCTCTTTTCTTCTGTGC
CGAAGCTCTTTTCTTCTGTGC
CGAGACTCTCCGACCTTATGC
TGGGATCTCCCGACCTCATGG
CGAGATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAC
CGAGACTCTCCGACCTCGTGC
CGAAGCTCTTTTCTTCTGTGC

HapMap

or

1000

Genomes

or

Gongalo Abecasis

Li (2009) Ann Rev Gen Hum Genet 10:387

Identify match among

reference

Observed Genotypes

Reference Haplotypes

CGAGATCTCCTTCTTCTGTGC
[CGAGATCTCCCGACCTCATG G]
CCAAGCTCTTTTCTTCTGTGC
CGAAGCTCTTTTCTTCTGTGC
CGAGACTCTCCGACCTTATGC

TGGGATCTCCCGACCTCATGG

CGAGATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAC
CGAGACTCTCCGACCTCGTGC
[CEAAGCTCTTTTCTTCTGTGC

Gongalo Abecasis

Li (2009) Ann Rev Gen Hum Genet 10:387

18
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impute missing genotypes

Li (2009) Ann Rev Gen Hum Genet 10:387

Phase chromosomes,

Observed Genotypes

|0

cccgAcctec
ttttcC

>|>

t
Cc

Q>
O~

cgag
cgaa

Reference Haplotypes

QOO0 -H00 000
DIOOOOOOOOG

== O O|H|O

-0 - -Hlo|4 4 -|lo|=
DO R>e oo
I I | 1 BRI ] B
DO >oOeIo O O|O|®
0 00 o|le|o o o|le|o

B> >>0>>P>3>
POOOOO> >0
@>>>>>0 0>
OO0 -4 -400 0|+
—H-= 400 -4 -H0|o
Olo0-H-H00 0|+
—H- 400 -4 40|o
=HO 4000 4 -H0|0
=HO 4000 -H-H0|H
HloOo 4606060 46|+
O|> 0> > >0 0|>0
=HO 4000 - -H0|H
=HO 4000 - H|0|H
O--+

Gongalo Abecasis

—logo p—value for LDL

LDLR locus and LDL cholesterol

Mu317k 1 | "o L T I 1 | A L [ B LM [ R N A 1
AffyS00k1 1 | | wimonon N | 1 | nm i
Imputed I TRECEE FE U 00N REEE T D00 0T T VPV O

o
~ 4 =
=
® Imputed SNPs
] -6
© © Affy 500k &—Pocisaraing = 1.7 x 10 S
B °
Lo
< ©
™ - Lo
0. . <
o~ A ° " °
. =)
I *‘% 4 X i'.‘. 5
o ° °o® o
* GRS YO
o 1 %*..h.‘!’o. o ® g° tPpAdet |
[CARYL -2 DOCKS.
< YIPF2 LOC55908 —
C190rf52 —
SMARCA4 —
LDLR —
HEH
< SPC24
< KANK2
-

T T
10.9 11.0 1.1 1.2
Position on chromosome 19 (Mb)

Li (2009) Ann Rev Genomics Hum Genet 10:387

cM/Mb

April 20, 2016

Karen Mohlke, Ph.D.

19



NHGRI Current Topics in Genome A

Week 9: Genomic Approaches to the Study of Complex Genetic Diseases

nalysis 2016

Combining GWAS by meta-analysis

Combine studies giving more weight to
studies with greater precision

Increase power vs individual studies

Can investigate consistency of effects
across studies

Potential sources of heterogeneity:
— Phenotype definitions are different
— Different genotyping and analysis strategies

— Environmental effects may differ

Common meta-analysis methods

/\

Combining GWAS by meta-analysis

P-value meta-analysis
(should take direction of
association under account)

continuous traits)

Effect size meta-analysis applied on
normalized effects (e.g. natural
logarithm of odds ratio for binary
outcomes, mean difference or
standardized mean difference for

/\

Fixed effects
(between-study

to be zero)

variance is assumed

Random effects
(between-study variance
estimated and
incorporated)

Bayesian meta-analysis (incorporates
uncertainty in prior beliefs about
parameters such as between-study

variance, effect size, genetic model)

Zeggini (2009) Pharmacogenomics 10:191

April 20, 2016

Karen Mohlke, Ph.D.

20



NHGRI Current Topics in Genome Analysis 2016
Week 9: Genomic Approaches to the Study of Complex Genetic Diseases

April 20, 2016

Karen Mohlke, Ph.D.

Outline

— Samples/study participants
— Genotyping
— Tests of association

* Interpretation of results
— Effect size and significance

— Imputation and meta-analysis

— Example locus characteristics
» Sequencing/rare variant studies

« Genome-wide association study design

‘Manhattan plot’ for HDL-cholesterol

. - emee

Novel HDL loci
GWS HDL loci
80 - GWAS, New for HDL

-log,o p-value

Chromosome

Global Lipids Genetics Consortium

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1819202122

188,577 individuals from 60 studies, GWAS + metabochip variants

GLGC (2013) Nat Gen 45:1274
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Table 1 New loci primarily associated with HDL cholesterol levels obtained from joint GWAS and Metabochip meta-analysis

hgl9 Associated M j
Locus Marker name  Chr. posilitg)n (Mb) trait(s) MAF allele Effect of Al Joint n (x1,000) |Joinl Pvalue I
PIGV-NROB2 15127481562 1 27.14 _ HDL, LDL, TG_0.09 T/C__ -0.051,0.050,0.037 187,173,178 1x10-15 3x10-12 1x10-9
HDGF-PMVK rs12145743 1 156.70 HDL 0.34 G/T 0.020 181 2x10-8
ANGPTL1 rs4650994 1 178.52  HDL 0.49 G/A 0.021 187 7x10-9
CPS1 151047891 2 211.54  HDL 0.33 AC -0.027 182 9 x10-10
ATG7 152606736 3 11.40  HDL 0.39 cm 0.025 129 5x10-8
SETD2 152290547 3 47.06  HDL 0.20 AG -0.030 187 4x107°
RBM5 rs2013208 3 50.13 HDL 0.50 TIC 0.025 170 9x10-12
STAB1 rs13326165 3 52.563 HDL 0.21 AG 0.029 187 9x10-11
GSK3B rs6805251 3 119.56 HDL 0.39 T/IC 0.020 186 1x10-8
Cdorf52 1510019888 4 26.06  HDL 0.18 G/A -0.027 187 5x 108
FAM13A 153822072 4 89.74  HDL 0.46 AG -0.025 187 4x10-12
ADH5 152602836 4 100.01  HDL 0.44 AG 0.019 187 5x10-8
RSPO3 rs1936800 6 127.44  HDL, TG® 0.49 cm 0.020, -0.020 187, 168 3x10710,3x 108
DAGLB rs702485 7 6.45 HDL 0.45 G/A 0.024 187 6x10-12
SNX13 154142995 7 17.92  HDL 0.38 TG -0.026 165 9x10-12
IKZF1 154917014 7 50.31  HDL 0.32 G/T 0.022 187 1x10-8
TMEM176A 1517173637 7 150.53  HDL 0.12 cm -0.036 184 2x108
MARCH8-ALOX5 rs970548 10 46.01  HDL, TC 0.26 C/A 0.026, 0.025 187, 187 2x10710,8x 102
OR4C46 511246602 11 51.561  HDL 0.15 cm 0.034 176 2x10-10
KATS rs12801636 11 65.39 HDL 0.23 AG 0.024 187 3x108
MOGAT2-DGAT2  rs499974 11 7546  HDL 0.19 AC -0.026 187 1x10-8
ZBTB42-AKT1  rs4983559 14 105.28  HDL 0.40 G/A 0.020 184 1x10-8
FTO 151121980 16 53.81  HDL, TGP 0.43 AG -0.020, 0.021 186, 155 7x10°9,3x108
HAS1 1517695224 19 52.32  HDL 0.26 AG -0.029 185 2x10°13

Chr., chromosome; A1, minor allele; A2, major allele; TG, triglycerides; TC, total cholesterol. Effect sizes are given with respect to the minor allele (A1) in s.d. [For loci associated

WITIT TWO OF TTOTE ralts at g TgnITICance, e war

10 e SIroNgest PValue 15 11Sted TSt

aThe secondary trait was most strongly associated with a different SNP: rs719726 (within 1 Mb of rs1936800, r2 = 0.74). bThe secondary trait was most strongly associated with a different

SNP. rs3930333 (within 1 Mb of rs1121980. 2 = 0.99).

GLGC (2013) Nat Gen 45:1274

Single good candidate gene

60 — 2

50 - 08
0.6
04

40 02

~logso(p-value)

rs2954029

(Q/IND) el uoieuIqUIodaY

50015 7381—> NSMCE2—>

TRIB1—>
n

ZNF572—
n
SQLE—~
[y

<KIAA0196
e

1 T
126.2

126.4

T
126.6
Position on chr8 (Mb)

126.8 127

Teslovich (2010) Nature 466:707
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Signal outside of genes

rs10965250

2 |t 100

(QW/W0) 1.l UoRBUIqUIODS.

—logo(p-value)

21.95 22 2205 291 2215 222 2295 203
position on chr9 (Mb) Voight (2010) Nat Gen 42:579
[ ]
Many candidate genes
15 1s7134594 2 |F 100

(QW/Wo) res uojeuIquIcosY

with caution; many are merely
the nearest gene to the signal

1b)

ACACB— MYO1H— UBE3B— MVK— C120rf34—
oty YR crzoree;
<—FOXN4 <-KCTD10 <—MAB < MGC14436
< TRPV4
Interpret GWA locus names | | e
108.5 108.6 108.7

Teslovich (2010) Nature 466:707
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Interpret plausible candidate genes
Gene with
Nearest  Nearest No. of Genes Literature Nonsynonymous SNP eQTL Gene | Pathway
Locus Gene Gene (kb)  within 100kb Candid: (r2>0.8) (P<5x10'8) Analysis
Loci Primarily A d with HDL Ch:
PIGV-NROB2 PIGV 135 7 PIGV, NROB2 NUDC*, Clorf172%, NROB2
NROB2
HDGF-PMVK* RRNADI 0 10 HDGF, CRABP2  HDGF
ANGPTL1* Clorf220 0 3
cps1 cPs1 0 2 cPs1 cPs1
ATG7 ATG7 0 2
SETD2 SETD2 0 4 NBEAL2
RBMS RBMS5 0 4 MSTIR* RBMS5
STAB1 STAB1 0 10 STAB1, NISCH ~ NISCH
GSK38 GSk38 0 3 GSK3B, NR112 GSK3B
Cdorf52* Cdorf52* 1315 0
FAM13A FAM13A 0 2
ADH5 ADH5 4.9 4 ADH5
RSPO3 RSPO3 4 1
DAGLB DAGLB 0 5 DAGLB DAGLB DAGLB
SNX13 SNX13 0 1 SNX13
IKZF1 IKZF1 0 1 IKZF1
TMEM176A ABP1 20.1 5 TMEM176A
MARCH8-ALOX5 MARCH8 0 3 ALOX5 MARCHS
OR4C46 OR4C46 3.2 2 OR5W2*, OR5D13*,
OR5AS1*
GLGC (2013) Nat Gen 45:1274
Nearby independent signals
5 1 & rs281322 b =2¢-15
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<-:1E,:I.w
AREY 755 kb
} LIPG-> I ITRT]
k HH—H
T T T T T
56.3 56.4 56.5 56.6 56.7
Position on chromosome 15 (Mb) Cristen Willer
CEU: D’ =.07, r2 < .01, p-values remain unchanged with other SNP as covariate
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Conditional analysis
y = PBo + By
Trait = p, + p,SNP, + 3,SNP,

[HDL] = B, + B4rs261332 + [3,rs4775041

[HDL] = B, + p4rs261332 + 3,rs4775041 + Bysex + B,age + fzage?

Tests independence of SNP effects

If B, changes when (3, is included in the model,
then SNP, is sometimes inherited with SNP,

If neither 3 changes in reciprocal tests, then the
two SNPs independently affect the trait

Fine-mapping across populations

56601209  EUropeans H

—log1o(p-value)

—logqo(p-value)

9’.2 9.é5 973 9.:";5 94
HDL-C locus near PPP1R3B Position on chr8 (Mb) Wu (2013) PLoS Gen 9:1003379

April 20, 2016

Karen Mohlke, Ph.D.
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Outline

« Genome-wide association study design
— Samples/study participants
— Genotyping
— Tests of association
— Imputation and meta-analysis
* Interpretation of results
— Effect size and significance
— Example locus characteristics

« Sequencing/rare variant studies

4 X o N\
Whole Whole
Genome Exome Genotyping
Sequencing Sequencing
. A N J/
| I 1
Variantand genotype calling Genotype calling
l » \ 1
Imputation (optional)

| 1

[ Single-pointassociation analysis ] Locus-based association analysis J

|

. s Sequence-based
Variant-based replication replication

Figure 1. An overview of steps taken in the search for low-frequency and rare
variants affecting complex traits.

Panoutsopoulou (2013) Hum Mol Gen 22:R16
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Some sequencing study designs
for complex traits
Sequence selected individuals

extreme trait values (>95% vs <5% level)
cases and controls

Increase the number of individuals

by decreasing sequencing coverage ($)

by collecting rare variants onto a
less expensive genotyping array

Sequence population isolates, where rare
variants may have drifted to higher
frequencies and LD may be longer

REPORT

Medical Sequencing at the Extremes of Human Body Mass

Nadav Ahituv, Nihan Kavaslar, Wendy Schackwitz, Anna Ustaszewska, Joel Martin, Sybil Hébert,
Heather Doelle, Baran Ersoy, Gregory Kryukov, Steffen Schmidt, Nir Yosef, Eytan Ruppin,
Roded Sharan, Christian Vaisse, Shamil Sunyaev, Robert Dent, Jonathan Cohen,

Ruth McPherson, and Len A. Pennacchio

Sequenced coding regions and splice junctions of 58 genes in
379 obese individuals with mean BMI 49 and 378 lean individuals with mean BMI 19

Found >1000 variants, including 8 in MC4R that were subsequently tested for function

Table 4. Functional Characterization of MC4R Nonsynonymous Variants in the Obese Cohort

Results of Functional Studies

Known alpha-MSH
Variant Sequence n or Novel Activation (EC50) Basal Activity Summary
S30F tgagt[c/t]ccttg 1 Known'®  Not tested alone™  Not tested alone'**
G32E ccttg[g/alaaaag 1 Novel .3nM 70% Minor
E61K tgttg[g/a]agaat 1 Novel Low <10% Severe
S127L tgact[c/t]ggtga 1 Known'** 29 nM 80% Intermediate
L211Del®  ttct[ctct/-]atgt 2 Known'”™  Truncated receptor  Truncated receptor Severe
P299H* cgatc[c/a]tctga 2 Known'™  Negative =10% Severe
A303T tttat[g/a]cactc 1 Novel Low =<10% Severe
C326R gcctt[t/c]gtgac 1 Novel 4 nM 150% Minor
Wild type " .3nM 100%

2 Individuals who had the L211Del also had the P299H variant.

Am. J. Hum. Genet. 2007;80:779-791.
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Variant discovery at GWAS locus

- Sequence ‘positional candidate’ genes in cases &
controls or individuals with extreme trait values

+ Identify variants in cases (one extreme) that are
absent from controls (other extreme)

« Hypothesize that occasional ‘smoking gun’ variants
with strong effect will be identified

+ Use evidence that variants affect gene function and
lead to the same diseasel/trait to implicate that gene
at the association signal

* Does not require finding the variant(s) responsible
for association signal that may have a weaker effect

Rare Variants of IFIH1, a Gene
Implicated in Antiviral Responses,
Protect Against Type 1 Diabetes

Sergey Nejentsev,l'z‘ Neil Walker,* David Riches,? Michael Egholm,3 John A. Todd®

Resequenced exons and splice sites of 10 candidate genes
in pools of DNA from 480 pts & 480 controls
Tested variants for association in >30,000 subjects

| Thr946Ala |

T1D variants:

Helicase
CARD2 . ATP-binding

|GIu627X | IIIe923VaI I

oooooo
Helicase
C-terminal

SCIENCE VOL 324 17 APRIL 2009

CARD1
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Rare variants confirmed to be
associated with T1D in more samples

Table 2. Association analysis of the four rare /FIH1 polymorphisms in T1D patients and controls and in families that have one or more offspring with
T1D and their parents. Results for additional /FIH1 SNPs are shown in table S5. Cl, confidence interval; T/NT, number of alleles transmitted and
nontransmitted to the affected offspring.

Case—control study Family study
Alleter MAF  OR RR Combined
1>2 11 (%) 12 (%) 22 (%) %) (95% Ct P valuet T/NT (95% Ciit P value§ P valuell
1s35667974/1923V A>G T1D 7853(97.8) 172 (2.1) 3 (0.04) 1.1 0.51 1.3 x 107 67/111 0.60 5.9 x 107 2.1 x 107*¢
Exon 14 controls 9166 (95.7) 404 (4.2) 4 (0.04) 2.2 (0.43 — 0.61) (0.45 — 0.82)
rs35337543/IVS8+1 G >C TID 7945 (98.0) 163 (2.0) 0 (0.0) 1.0 0.68 1.1x 107 5160 0.85 020 14x107
Intron 8, splice site controls 9330 (97.1) 280 (2.9) 0 (0.0) 1.5 (0.56 — 0.83) (0.59 — 1.23)
1s35744605/E627X  G>T T1D 8109 (99.) 76 (0.9) 0 (0.0) 0.46  0.69 9.0 x 107 17/31 055  2.8x107 13x 107
Exon10 controls 9621 (98.7) 131 (1.3) 0 (0.0) 0.67 (0.52 — 0.91) (0.30 - 0.99)
rs35732034/IVS14+41  G>A T1D 8047 (98.6) 109 (1.3) 2 (0.03) 0.69 0.74 1.2 x 1072 35/56 0.63 21x107% 1.1x 1073
Intron 14, splice site controls 9552 (98.1) 180 (1.9) 1 (0.01) 0.93 (0.59 — 0.94) (0.41 - 0.95)

*Major allele is coded 1; minor allele is coded 2. OR and relative risks (RR) for minor (rarer) alleles are shown.
P values were calaulated with transmission disequilibrium test with robust variance estimates.
described previously (26).

+Two-tailed P values were calculated with logistic regression.  §One-tailed
licombined P values for the case-control and famiy data were calculated with a score test as

Establishes the role of IFIH1 in T1D and demonstrates that
resequencing studies can pinpoint disease-causing genes in
regions initially identified by GWASs.

SCIENCE VOL 324

17 APRIL 2009

Identify an increased ‘burden’ of
variants in a single gene or locus

C%Se chromoscg‘mes

X

X— « Many individually important
variants will be too rare to
detect the association with the
trait; however, there will often
be more than one important
variant in a gene

|

X

Control chromosomes

X—X:

Gene-based tests combine
information from multiple
variants into a single test
statistic to be used as predictor
in genetic association tests

—

:
X

———
Candidate gene

Raychaudhuri (2011) Cell 147:57
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Rare variant burden (gene-based) tests

» Collapse information from multiple variants into single
test (e.g. count risk alleles across a set of variants)

* Some tests allow the direction of effect of each variant
to be different (gain of function versus lost of function)

* Choice of variants to include in tests has a large impact
on the test. Including too many neutral variants reduces
statistical power, but so can not including the right ones

* Filter missense variants on minor allele frequency
and predictive function

* Restrict tests to obvious functional variants
(nonsense, frameshift indels, splice errors)

= - =

Gene-based rare variant association methods

Method name Citation Software Description

Unidirectional rare variant gene-based tests

Collapsing methods

Combined Multivariate and Liu & Leal, PLoS Comp. EPACTS All rare variants collapsed into a single variant; individual dosage for the

Collapsing (CMC) Bio. 2008 collapsed ‘variant’ is regressed against phenotype.

Weighted and un-weighted sum methods

Variable threshold (VT) Price et al, AJHG. 2010 PLINK-Seq Sum of rare allele count in cases vs. controls; allele frequency threshold for
inclusion is varied to maximize test statistic.

Weighted Sum Statistic Madsen & Browning, PLINK-Seq Permutation-based test comparing inverse-frequency-weighted rare variant

(FRQWGT) PLoS Gen. 2009 counts per individual in cases vs. controls.

Weighted Sum Method Madsen & Browning, EPACTS Wilcoxon Rank Sum test between phenotypes and inverse frequency-

(WILCOX-WSS) PLoS Gen. 2009 weighted rare variant scores.

Kernel-Based Adaptive Liu & Leal, PLoS Gen. PLINK-Seq Variant weights are determined adaptively, and are based on observed

Cluster (KBAC) 2010 effect sizes; individuals scored by weighted sum of allele counts.

Summary case:control count methods

BURDEN method Purcell (PLINK-Seq) PLINK-Seq Permutation-based test comparing raw allele counts in cases vs. controls.

UNIQ test Purcell (PLINK-Seq) PLINK-Seq Simple count of total case-unique rare alleles; permutations to assess
significance.

Bi-dlii i ari; gene-based tests

C-ALPHA Neale et al, PLoS Gen. PLINK-Seq Detects deviation of observed case:control variant counts from expected

2011 binomial distribution.

Sequence Kernel Association ~ Wu et al, AJHG 2011 EPACTS Generalized form of C-ALPHA with variants weighted by allele frequency.

Test (SKAT)

Linear ination of unidirectional and vari tests

SKAT-O (‘Optimal’ SKAT) Lee et al, AJHG. 2012 EPACTS Adaptive linear combination of unidirectional burden test and variance-
component SKAT test.

Mixed Effects Score Test Sun et al, Genetic Epi Public R Hierarchical regression model combining two independent test statistics

(MiIST) 2013 package which quantify variant effect sizes and ‘heterogeneity’.

Moutsianas (2015) PLoS Genet 11: €1005165
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An example of a gene-based test

Loss-of-function mutations in SLC30A8 protect against
type 2 diabetes

Initially sequenced 352 young lean T2D cases,
406 elderly obese euglycemic controls

Then tested variants in 6,388 cases and 7,496 controls

Found a nonsense variant in 7 cases and 21 controls,
odds ratio (OR) = 0.38, P=0.05

Added this variant to the exome array and tested more
individuals (N= 48,115, P = 0.0067).

Difficult to increase sample size because variant mostly
restricted to western Finland

Expanded to look at more variants in the gene in other
populations...

Flannick (2014) NatGen 46:357

- - . = .
SLC30A8 variants in ~150,000 individuals
Table 1 Association of SLC30A8 variants with T2D
N Carriers Allele frequency
Variant Ancestry Country Cohort Cases Controls Cases Controls Cases (%) Controls (%) (95% CI) P
p.Argl38* European Finland Botnia 3,727 5,440 9 39 0.12 0.36 0.47 (0.27-0.81) 0.0067
European Sweden Malmo 6,960 5,480 2 3 0.014 0.027
European Sweden PIVUS/ULSAM 270 1,734 1 3 0.19 0.087
European Denmark Danish 3,889 7,869 0 9 0.0 0.057
European Finland Finnish 4,050 8,696 1 2 0.012 0.011
South Asian Singapore Singapore Indians 562 585 1 1 0.089 0.085
European UK UKT2D 321 319 0 1 0.0 0.16
p.Lys34Serfs*50 European Iceland deCODE 2,953 67,919 2 248 0.034 0.18 0.17 (0.05-0.52) 0.0019
European Norway HUNT2 1,645 4,069 0 3 0.0 0.037
c.7142T>A African American United States WFS 501 527 1 0 0.1 0.0 0.30 (0.14-0.64) 0.0021
African American United States JHS 530 533 0 1 0.0 0.094
p.Met50lle European Germany KORA 97 91 0 1 0.0 0.55
€.2714G>A East Asian Korea KARE 520 551 0 1 0.0 0.091
South Asian Singapore Singapore Indians 562 585 0 1 0.0 0.085
c.419-1G>C South Asian UK LOLIPOP 530 537 1 0 0.094 0.0
p.Trpl52* European Finland Botnia 134 180 0 1 0.0 0.28
p.GIn174* South Asian UK LOLIPOP 530 537 1 5 0.094 0.47
c.572+1G>A African American United States JHS 530 533 0 1 0.0 0.094
p.Tyr284* South Asian UK LOLIPOP 530 537 0 2 0.0 0.19
South Asian Singapore Singapore Indians 562 585 0 1 0.0 0.085
p.lle291Phefs*2 African American United States JHS 530 533 0 1 0.0 0.094
p.Ser327Thrs*55 African American United States WFS 501 527 0 2 0.0 0.19
Combined - - - l 30,433 118,701 19 326 - - 0.34 (0.21-0.53) 1.7 x 10-6
Through sequencing and genotyping of ~150,000 individuals across 5 ancestry groups, a spectrum of 12 rare predicted protein-truncating variants was identified in SLC30A8.
Shown for each variant are ancestry group, cohort, number of genotyped cases and controls (N, number of cases and controls observed to carry the variant, and observed allele
frequencies in cases and controls. ORs and P values were computed separately for three groups of variants: p.Arg138*, p.Lys34Serfs*50 and the remaining variants. For p.Arg138*
and p.Lys34Serfs*50, for which more than ten carriers were observed, statistics were computed separately for each cohort (Online Methods and Supplementary Note) and then
combined via a fixed-effects meta-analysis. For the remaining variants, an association score was computed by comparing the aggregate frequencies of variant carriers in cases and
controls, These three statistics were combined via a random-effects meta-analysis to produce of risk and significance (bottom row). Variant counts
and frequencies were computed on the basis of all studied individuals, whereas ORs and P values were computed with correction for sample structure (population stratification
and genetic relatedness; y Note); thus, ORs differ from those solely from freq Cl, confidence interval.
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UK10K sequencing study

UK10K-cohorts
64 traits (31 shared between ALSPAC and TwinsUK)

Single-variant
(WGS n =3,621 and GWA, n = 9,132)

13,074,236 SNVs and
1,122,542 biallelic indels, MAF > 0.1%

APOC3, ADIPOQ

Meta-analysis

LDLR, RGAG1

Genome-wide
(WGS, n =3,621)

Exome-wide
(WGS, n = 3,621)

MAF < 1%, SKAT, SKAT-O 1.96 million windows
MAF < 1%, SKAT, SKAT-O
Naive
26,226 genes (50,717 windows,
median 38 variants per window)
Functional
14,909 genes (median 13 variants per gene)
Loss-of-function

3,208 genes (median 2 variants per gene)

APOB CDH13

UK10K (2015) Nature 526:82

2.5+

2.0

1.5 APOC3

Beta

1.0

0.54

0.0-

UK10K association results

—— n=3,621,a=4.62x1071°
n=9,132, & =4.62 x 10710

+ Known
Novel

0Q ¢ & CEeTP CETP
POSK9 o
»

0.1 0.2
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Figure 3 | Summary of association results across the UK10K-cohorts study.

UK10K (2015) Nature 526:82
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Clinical translation

‘ Identification of susceptibility variants ‘

/ \

‘ Novel biological insights ‘ Improved measures of individual
aetiological processes

\ 4 l
Clinical advances | Personalized medncnne

/ 1\ /l\

Therapeutic ‘Biomarkers| IPrevention‘ ‘Diagnos‘acs‘ ‘Prognostlcs‘ Therapeutic
targets optimization

McCarthy (2008) Nat Rev Gen 9:356

Future of complex trait analyses

* More and more loci identified

« Larger meta-analyses

» Deeper follow-up of signals

* More diverse populations

* Gene-based results from rare variants
 Gene-gene and -environment interactions

* Molecular and biological mechanisms
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