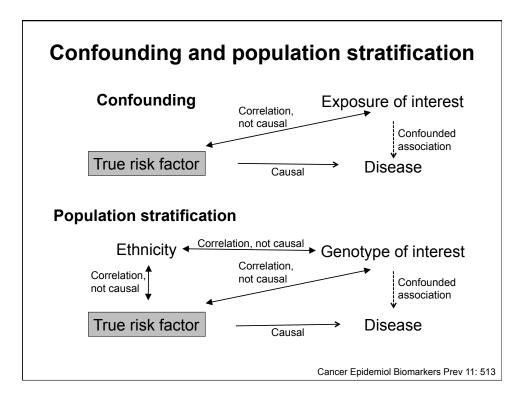
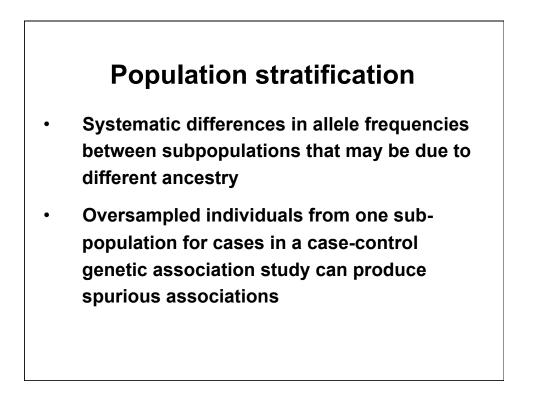
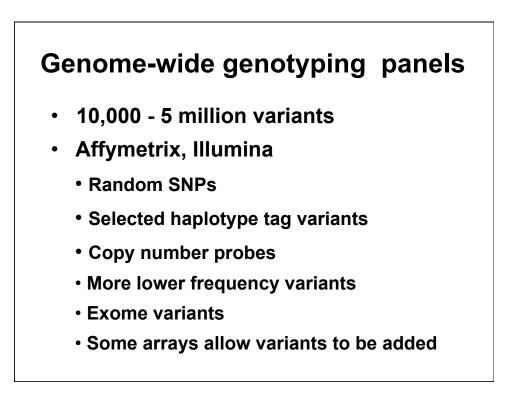
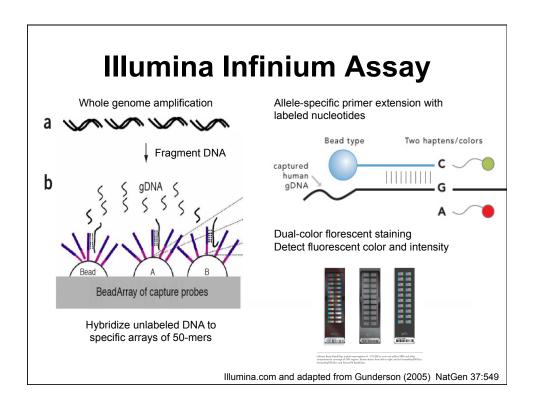

	Study designs
Popu time	lation-based cohort
ume	Enroll subjects regardless of health or disease
Pros time	Enroll subjects; measure X,Y,Z over time, wait for disease onset
Case time	-control
	What happened Identify/enroll prior to disease onset? cases and controls

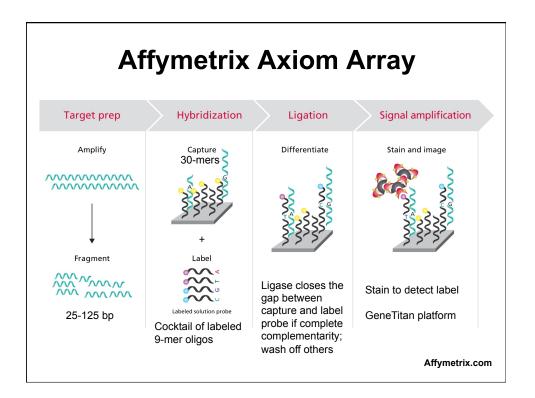




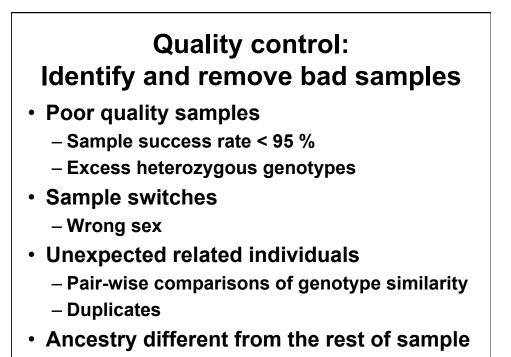


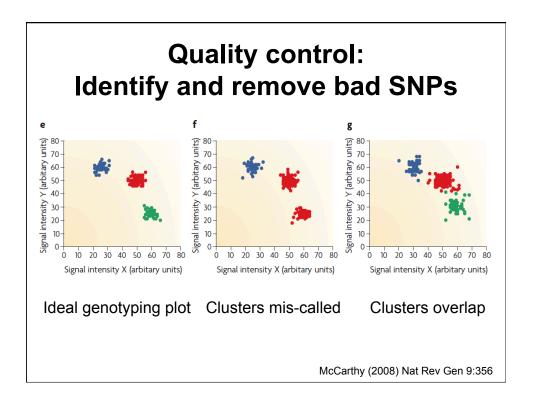


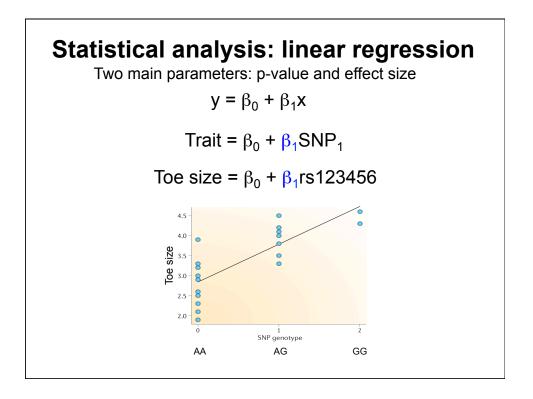

Account for or avoid population stratification

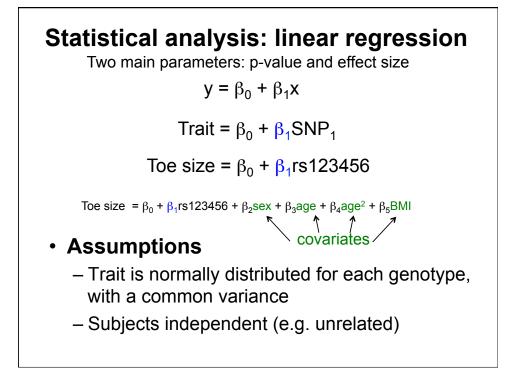

- Match cases with controls
- Restrict to one subgroup
- Adjust for genetic background

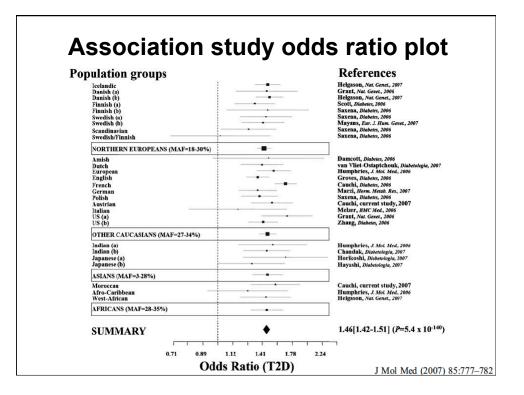
 E.g. Use principle components (PCs) to infer
 ancestry from genotype data and adjust for PCs in
 association analysis
- Family-based study design genotype relatives and analyze transmission of alleles from heterozygous parents to offspring Transmission disequilibrium test (TDT), familybased association test (FBAT)

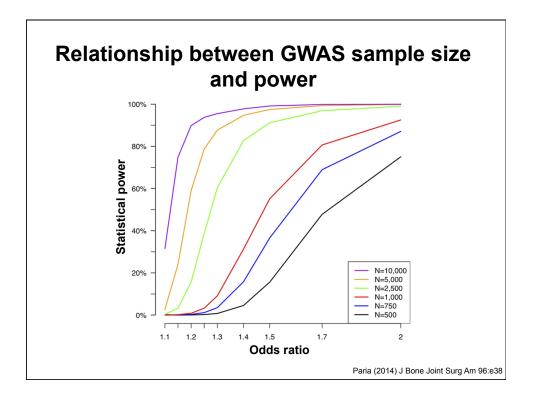


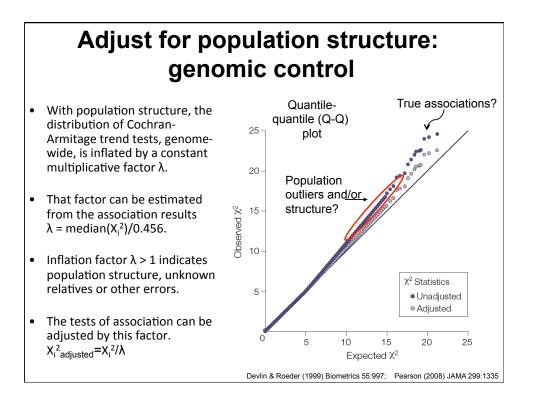


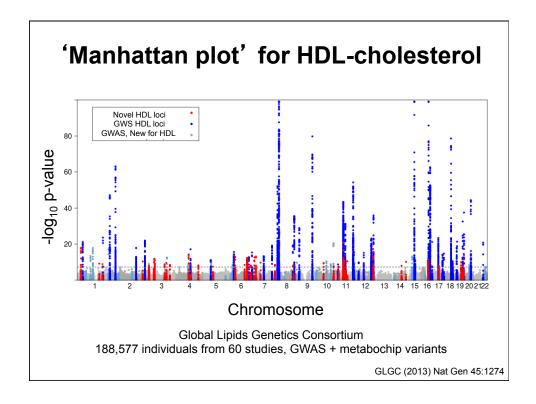

Global co	verage (%) b	y SNP chips	
SNP chip	CEU	CHB+JPT	YRI
SNP Array 5.0	64	66	41
SNP Array 6.0	83	84	62
HumanHap300	77	66	29
HumanHap550	87	83	50
HumanHap650Y	87	84	60
Human1M	93	92	68

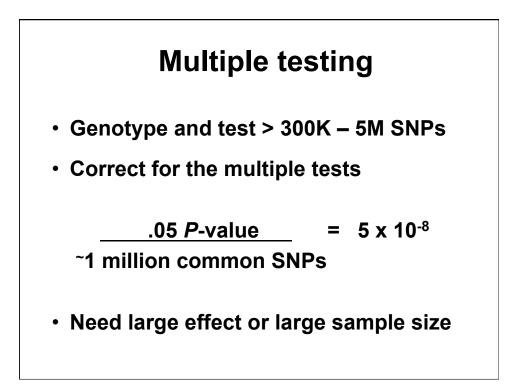


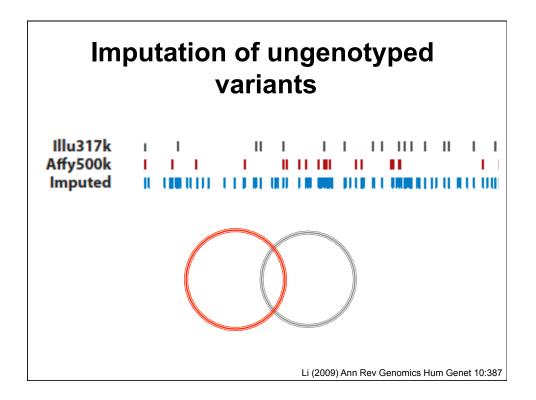

Quality control: Identify and remove bad SNPs

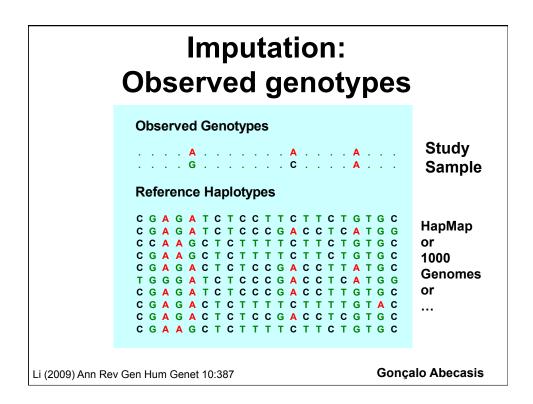

- Genotyping success rate < 95%
- Different genotypes in duplicate samples
- Expected proportions of genotypes are not consistent with observed allele frequencies
- Non-Mendelian inheritance in trios
- Differential missingness in cases and controls

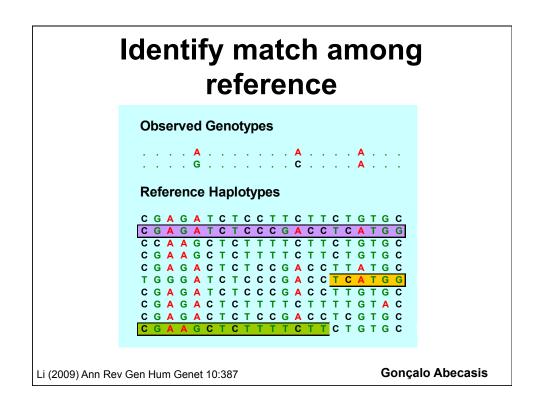


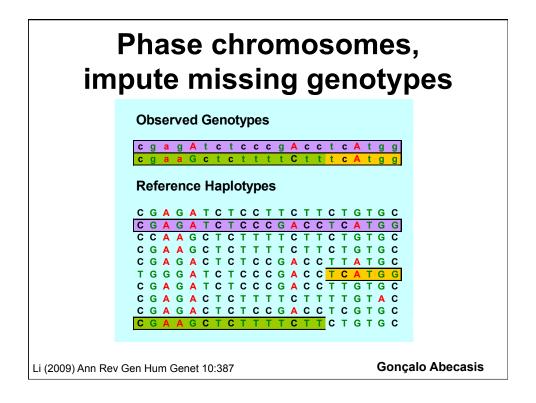


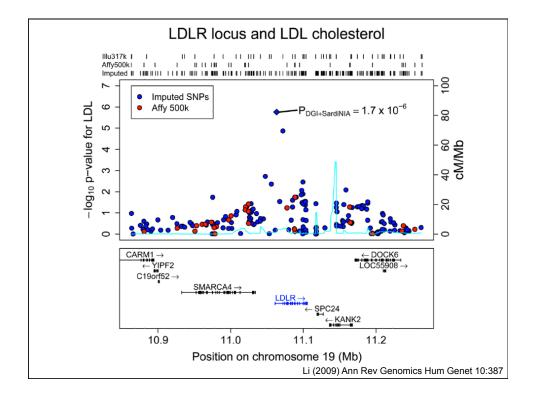


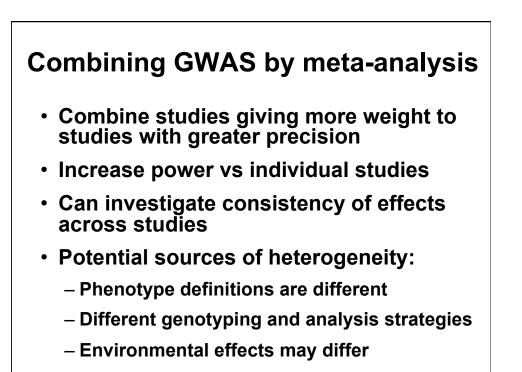


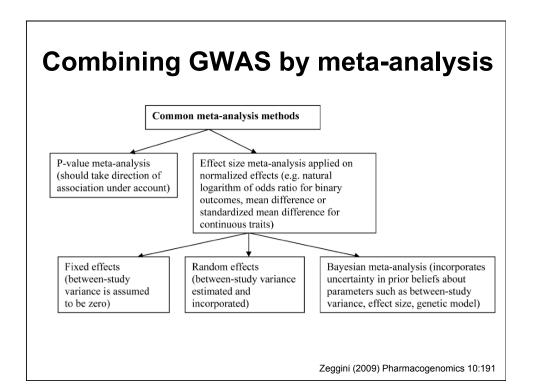


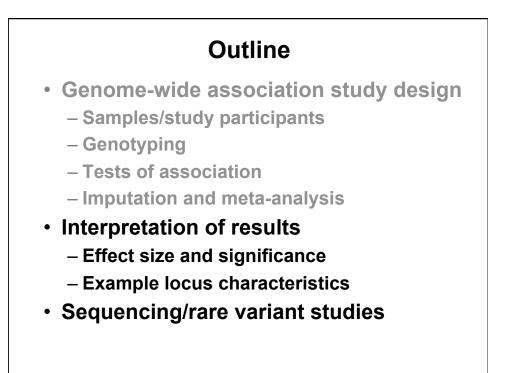


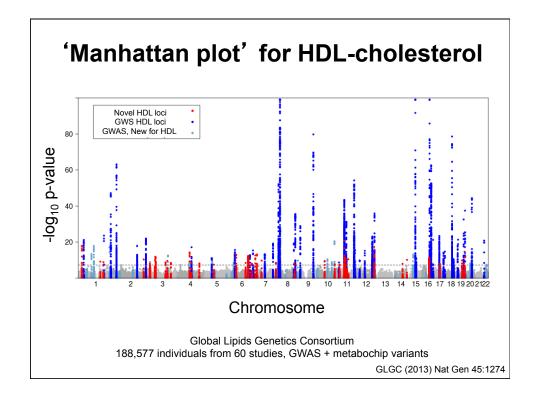


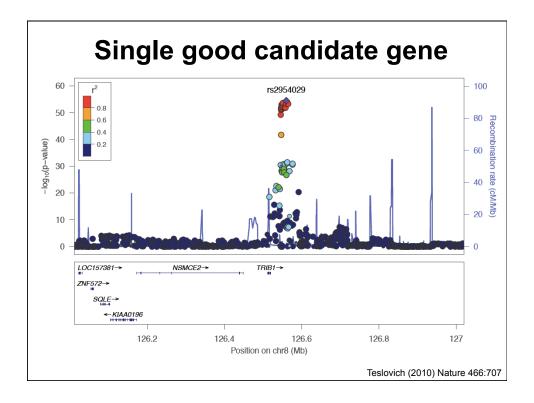


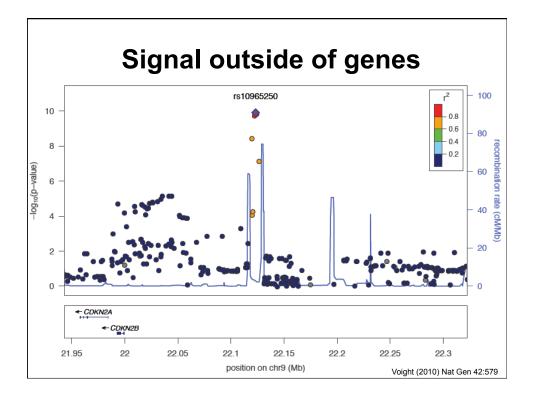






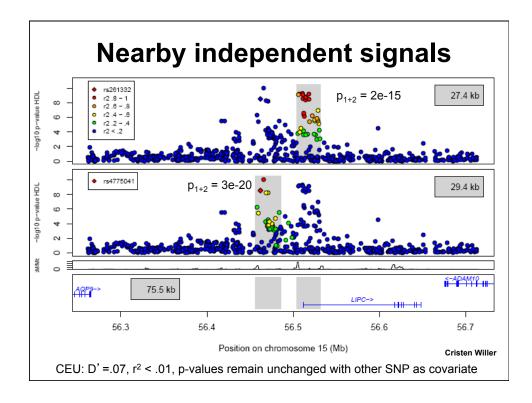


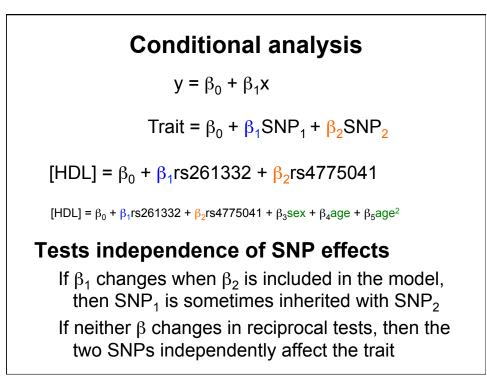


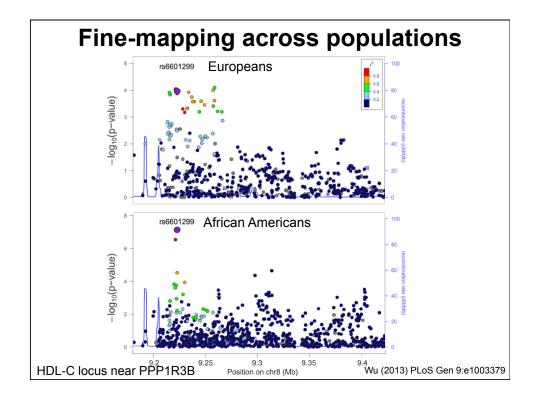


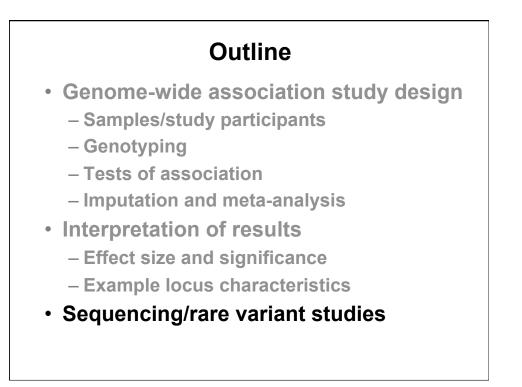
Г

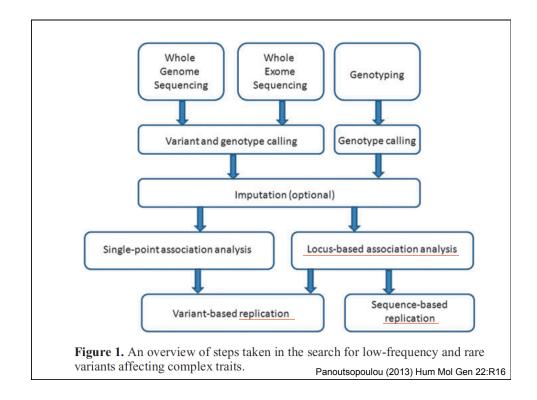
Locus	Marker name	Chr.	hg19 position (Mb)	Associated trait(s)	MAF	Minor/major allele	Effect of A1	Joint <i>n</i> (×1,000)	Joint <i>P</i> value
PIGV-NR0B2	rs12748152	1	27.14	HDL, LDL, TG	0.09	T/C	-0.051, 0.050, 0.037	187, 173, 178	1 × 10 ⁻¹⁵ , 3 × 10 ⁻¹² , 1 × 10 ⁻
HDGF-PMVK	rs12145743	1	156.70	HDL	0.34	G/T	0.020	181	2×10^{-8}
ANGPTL1	rs4650994	1	178.52	HDL	0.49	G/A	0.021	187	7×10^{-9}
CPS1	rs1047891	2	211.54	HDL	0.33	A/C	-0.027	182	9×10^{-10}
ATG7	rs2606736	3	11.40	HDL	0.39	C/T	0.025	129	5×10^{-8}
SETD2	rs2290547	3	47.06	HDL	0.20	A/G	-0.030	187	4×10^{-9}
RBM5	rs2013208	3	50.13	HDL	0.50	T/C	0.025	170	9×10^{-12}
STAB1	rs13326165	3	52.53	HDL	0.21	A/G	0.029	187	9×10^{-11}
GSK3B	rs6805251	3	119.56	HDL	0.39	T/C	0.020	186	1×10^{-8}
C4orf52	rs10019888	4	26.06	HDL	0.18	G/A	-0.027	187	5×10^{-8}
FAM13A	rs3822072	4	89.74	HDL	0.46	A/G	-0.025	187	4×10^{-12}
ADH5	rs2602836	4	100.01	HDL	0.44	A/G	0.019	187	5×10^{-8}
RSP03	rs1936800	6	127.44	HDL, TG ^a	0.49	C/T	0.020, -0.020	187, 168	3 × 10 ⁻¹⁰ , 3 × 10 ⁻⁸
DAGLB	rs702485	7	6.45	HDL	0.45	G/A	0.024	187	6×10^{-12}
SNX13	rs4142995	7	17.92	HDL	0.38	T/G	-0.026	165	9 × 10 ⁻¹²
IKZF1	rs4917014	7	50.31	HDL	0.32	G/T	0.022	187	1×10^{-8}
TMEM176A	rs17173637	7	150.53	HDL	0.12	C/T	-0.036	184	2×10-8
MARCH8-ALOX5	rs970548	10	46.01	HDL, TC	0.26	C/A	0.026, 0.025	187, 187	2×10^{-10} , 8×10^{-9}
OR4C46	rs11246602	11	51.51	HDL	0.15	C/T	0.034	176	2×10^{-10}
KAT5	rs12801636	11	65.39	HDL	0.23	A/G	0.024	187	3 × 10 ⁻⁸
MOGAT2-DGAT2	rs499974	11	75.46	HDL	0.19	A/C	-0.026	187	1×10^{-8}
ZBTB42-AKT1	rs4983559	14	105.28	HDL	0.40	G/A	0.020	184	1×10^{-8}
FTO	rs1121980	16	53.81	HDL, TG ^b	0.43	A/G	-0.020, 0.021	186, 155	7 × 10 ⁻⁹ , 3 × 10 ⁻⁸
HAS1	rs17695224	19	52.32	HDL	0.26	A/G	-0.029	185	2×10^{-13}
with two or more tra	was most strongly	ide si associ	gnificance, the t ated with a differ	rait corresponding	to the	strongest P val	ue is listed first.		lele (A1) in s.d. For loci associated strongly associated with a different

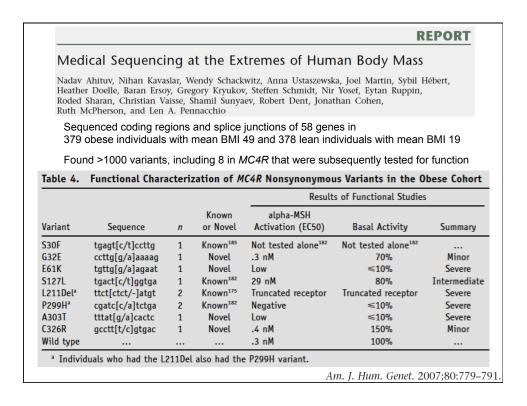


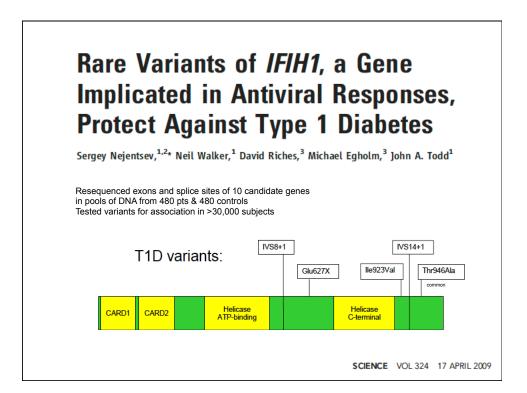





Interpret plausible candidate genes

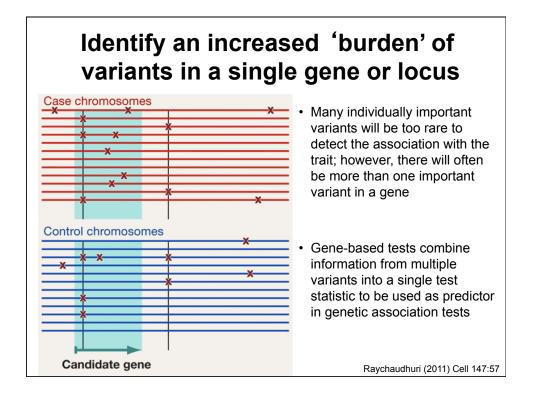

PIGV-NROB2 HDGF-PMVK* ANGPTL1* CPS1 ATG7 SETD2 RBM5 STAB1	PIGV RRNAD1	Nearest Gene (kb) y Associated 13.5	No. of Genes within 100kb with HDL Cholesto 7		Nonsynonymous SNP (r ² >0.8)	eQTL Gene (P<5x10 ⁻⁸)	Pathway Analysis
LC PIGV-NR0B2 HDGF-PMVK* ANGPTL1* CP51 ATG7 SETD2 REM5 STAB1	oci Primarily PIGV RRNAD1	y Associated	with HDL Cholest	terol	(r [*] >0.8)	(<i>P</i> <5x10 [~])	Analysis
PIGV-NR0B2 HDGF-PMVK* ANGPTL1* CPS1 ATG7 SETD2 RBM5 STAB1	PIGV RRNAD1						
PIGV-NROB2 HDGF-PMVK* ANGPTL1* CPS1 ATG7 ATG7 SETD2 RBM5 STAB1	PIGV RRNAD1						
ANGPTL1* CPS1 ATG7 SETD2 RBM5 STAB1				PIGV, NR0B2	NUDC*, C1orf172*, NR0B2		NROB2
CPS1 ATG7 SETD2 RBM5 STAB1	C10+1220	0	10	HDGF, CRABP2	HDGF		
ATG7 SETD2 RBM5 STAB1	C1orf220	0	3				
SETD2 RBM5 STAB1	CPS1	0	2		CPS1		CPS1
RBM5 STAB1	ATG7	0	2				
STAB1	SETD2	0	4		NBEAL2		
	RBM5	0	4		MST1R*	RBM5	
	STAB1	0	10	STAB1, NISCH	NISCH		
GSK3B	GSK3B	0	3	GSK3B, NR1I2			GSK3B
C4orf52*	C4orf52*	131.5	0				
FAM13A	FAM13A	0	2				
ADH5	ADH5	4.9	4			ADH5	
RSPO3	RSPO3	4	1				
DAGLB	DAGLB	0	5	DAGLB		DAGLB	DAGLB
SNX13	SNX13	0	1	SNX13			
IKZF1	IKZF1	0	1	IKZF1			
TMEM176A	ABP1	20.1	5			TMEM176A	
MARCH8-ALOX5	MARCH8	0	3	ALOX5	MARCH8		
OR4C46	OR4C46	3.2	2		OR5W2*, OR5D13*, OR5AS1*		
					CHISTISI		

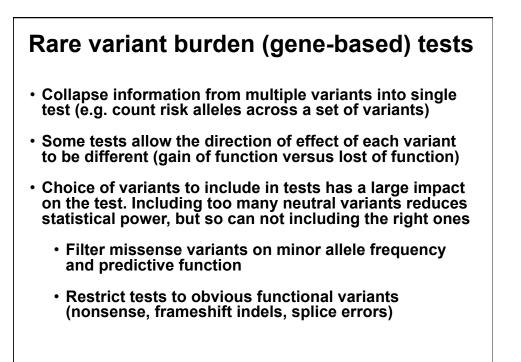




Some sequencing study designs for complex traits

- Sequence selected individuals
 - extreme trait values (>95% vs <5% level)
 - cases and controls
- Increase the number of individuals
 - by decreasing sequencing coverage (\$)
 - by collecting rare variants onto a less expensive genotyping array
- Sequence population isolates, where rare variants may have drifted to higher frequencies and LD may be longer


Rare variants confirmed to be associated with T1D in more samples

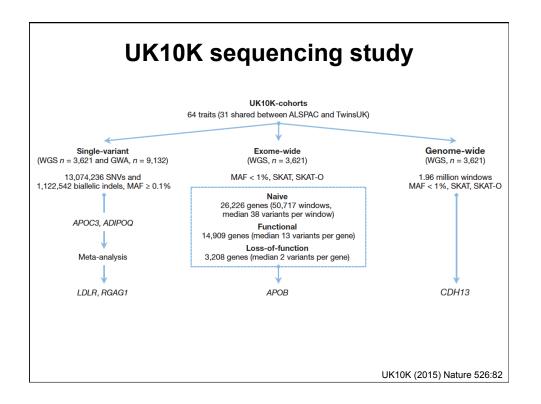

Table 2. Association analysis of the four rare *IFIH1* polymorphisms in T1D patients and controls and in families that have one or more offspring with T1D and their parents. Results for additional *IFIH1* SNPs are shown in table S5. CJ, confidence interval; *T/NT*, number of alleles transmitted and nontransmitted to the affected offspring.

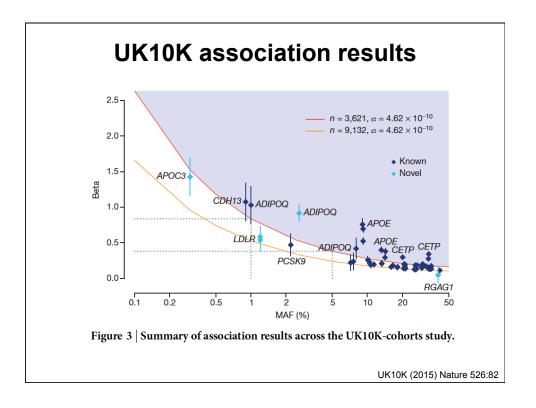
	Allele* 1 > 2						Cas	e-cont	trol st	tudy			Fami	ly study	
			11	(%)	12	(%)	22	(%)	MAF (%)	OR (95% CI)†	P value‡	T/NT	RR (95% CI)†	P value§	Combined <i>P</i> valuell
rs35667974/I923V	A > G	T1D	7853	(97.8)	172	(2.1)	3	(0.04)	1.1	0.51	1.3×10^{-14}	67/111	0.60	5.9×10^{-4}	2.1×10^{-16}
Exon 14		controls	9166	(95.7)	404	(4.2)	4	(0.04)	2.2	(0.43 - 0.61)			(0.45 - 0.82)		
rs35337543/IVS8+1	G > C	T1D	7945	(98.0)	163	(2.0)	0	(0.0)	1.0	0.68	1.1×10^{-4}	51/60	0.85	0.20	1.4×10^{-4}
Intron 8, splice site		controls	9330	(97.1)	280	(2.9)	0	(0.0)	1.5	(0.56 - 0.83)			(0.59 - 1.23)		
rs35744605/E627X	G > T	T1D	8109	(99.1)	76	(0.9)	0	(0.0)	0.46	0.69	9.0×10^{-3}	17/31	0.55	2.8×10^{-2}	1.3×10^{-3}
Exon10		controls	9621	(98.7)	131	(1.3)	0	(0.0)	0.67	(0.52 - 0.91)			(0.30 - 0.99)		
rs35732034/IV514+1	G > A	T1D	8047	(98.6)	109	(1.3)	2	(0.03)	0.69	0.74	1.2×10^{-2}	35/56	0.63	2.1×10^{-2}	1.1×10^{-3}
Intron 14, splice site		controls	9552	(98.1)	180	(1.9)	1	(0.01)	0.93	(0.59 - 0.94)			(0.41 - 0.95)		
*Major allele is coded 1; mino P values were calculated with described previously (26).										eles are shown. IlCombined P valu			e calculated with lo nd family data we		
□ - t - b l' - b		11 <u>-</u> -						ia :			بامام				-1
Establish	es	tne	101	e c	זנ		Н		n	I ID a	na ae	ernc	nstrat	ies in	at
resequen			ام	:						:					

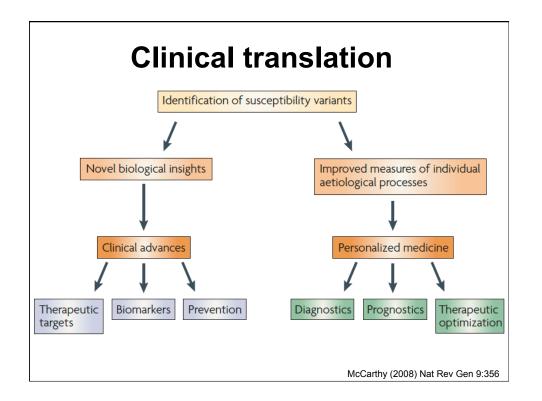
regions initially identified by GWASs.

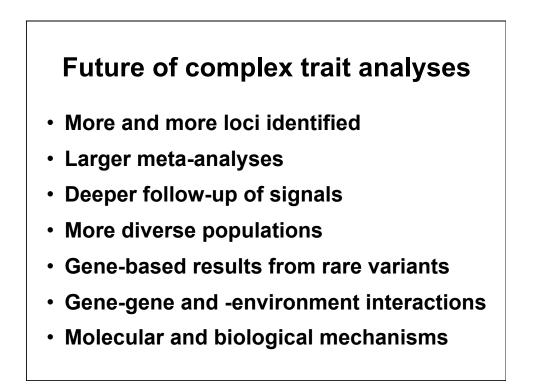
SCIENCE VOL 324 17 APRIL 2009

Method name	Citation	Software	Description
Unidirectional rare variant ge	ne-based tests		
Collapsing methods			
Combined Multivariate and Collapsing (CMC)	Liu & Leal, PLoS Comp. Bio. 2008	EPACTS	All rare variants collapsed into a single variant; individual dosage for the collapsed 'variant' is regressed against phenotype.
Weighted and un-weighted sun	n methods		
Variable threshold (VT)	Price et al, AJHG. 2010	PLINK-Seq	Sum of rare allele count in cases vs. controls; allele frequency threshold for inclusion is varied to maximize test statistic.
Weighted Sum Statistic (FRQWGT)	Madsen & Browning, PLoS Gen. 2009	PLINK-Seq	Permutation-based test comparing inverse-frequency-weighted rare variant counts per individual in cases vs. controls.
Weighted Sum Method (WILCOX-WSS)	Madsen & Browning, PLoS Gen. 2009	EPACTS	Wilcoxon Rank Sum test between phenotypes and inverse frequency- weighted rare variant scores.
Kernel-Based Adaptive Cluster (KBAC)	Liu & Leal, PLoS Gen. 2010	PLINK-Seq	Variant weights are determined adaptively, and are based on observed effect sizes; individuals scored by weighted sum of allele counts.
Summary case:control count m	ethods		
BURDEN method	Purcell (PLINK-Seq)	PLINK-Seq	Permutation-based test comparing raw allele counts in cases vs. controls.
UNIQ test	Purcell (PLINK-Seq)	PLINK-Seq	Simple count of total case-unique rare alleles; permutations to assess significance.
Bi-directional variance-comp	onent gene-based tests		
C-ALPHA	Neale et al, PLoS Gen. 2011	PLINK-Seq	Detects deviation of observed case:control variant counts from expected binomial distribution.
Sequence Kernel Association Test (SKAT)	Wu et al, AJHG 2011	EPACTS	Generalized form of C-ALPHA with variants weighted by allele frequency.
Linear combination of unidire	ectional and variance-com	ponent tests	
SKAT-O ('Optimal' SKAT)	Lee et al, AJHG. 2012	EPACTS	Adaptive linear combination of unidirectional burden test and variance- component SKAT test.
Mixed Effects Score Test (MiST)	Sun et al, Genetic Epi. 2013	Public R package	Hierarchical regression model combining two independent test statistics which quantify variant effect sizes and 'heterogeneity'.


An example of a gene-based test


Loss-of-function mutations in *SLC30A8* protect against type 2 diabetes


- Initially sequenced 352 young lean T2D cases, 406 elderly obese euglycemic controls
- Then tested variants in 6,388 cases and 7,496 controls
- Found a nonsense variant in 7 cases and 21 controls, odds ratio (OR) = 0.38, *P* = 0.05
- Added this variant to the exome array and tested more individuals (N= 48,115, *P* = 0.0067).
- Difficult to increase sample size because variant mostly restricted to western Finland
- Expanded to look at more variants in the gene in other populations...


Flannick (2014) NatGen 46:357

					N	Carriers		Allele f	requency	OR	
Variant	Ancestry	Country	Cohort	Cases	Controls	Cases	Controls	Cases (%)	Controls (%)	(95% CI)	Р
p.Arg138*	European	Finland	Botnia	3,727	5,440	9	39	0.12	0.36	0.47 (0.27-0.81)	0.0067
	European	Sweden	Malmo	6,960	5,480	2	3	0.014	0.027		
	European	Sweden	PIVUS/ULSAM	270	1,734	1	3	0.19	0.087		
	European	Denmark	Danish	3,889	7,869	0	9	0.0	0.057		
	European	Finland	Finnish	4,050	8,696	1	2	0.012	0.011		
	South Asian	Singapore	Singapore Indians	562	585	1	1	0.089	0.085		
	European	UK	UKT2D	321	319	0	1	0.0	0.16		
p.Lys34Serfs*50	European	Iceland	deCODE	2,953	67,919	2	248	0.034	0.18	0.17 (0.05-0.52)	0.0019
	European	Norway	HUNT2	1,645	4,069	0	з	0.0	0.037		
c.71+2T>A	African American	United States	WFS	501	527	1	0	0.1	0.0	0.30 (0.14-0.64)	0.0021
	African American	United States	JHS	530	533	0	1	0.0	0.094		
p.Met50IIe	European	Germany	KORA	97	91	0	1	0.0	0.55		
c.271+G>A	East Asian	Korea	KARE	520	551	0	1	0.0	0.091		
	South Asian	Singapore	Singapore Indians	562	585	0	1	0.0	0.085		
c.419–1G>C	South Asian	UK	LOLIPOP	530	537	1	0	0.094	0.0		
p.Trp152*	European	Finland	Botnia	134	180	0	1	0.0	0.28		
p.Gln174*	South Asian	UK	LOLIPOP	530	537	1	5	0.094	0.47		
c.572+1G>A	African American	United States	JHS	530	533	0	1	0.0	0.094		
p.Tyr284*	South Asian	UK	LOLIPOP	530	537	0	2	0.0	0.19		
	South Asian	Singapore	Singapore Indians	562	585	0	1	0.0	0.085		
p.IIe291Phefs*2	African American	United States	JHS	530	533	0	1	0.0	0.094		
p.Ser327Thrs*55	African American	United States	WFS	501	527	0	2	0.0	0.19		
Combined	-	-	-	30,433	118,701	19	326	-	-	0.34 (0.21-0.53)	1.7×1
Shown for each vari frequencies in case and p.Lys34Serfs*5 combined via a fixe controls. These three	ant are ancestry grou s and controls. ORs a io, for which more th d-effects meta-analyse e statistics were con	up, cohort, numb and <i>P</i> values were an ten carriers w sis. For the remain bined via a rand	tuals across 5 ancestry er of genotyped cases a computed separately rere observed, statistic ining variants, an asso om-effects meta-analy ed individuals, wherea:	and cont for three is were co ciation so vsis to pro	rols (<i>N</i>), nur groups of v mputed sep core was cor duce comb	mber of ariants: barately mputed ined est	cases and p.Arg138* for each co by compar imates of r	controls obs , p.Lys34Se phort (Online ing the aggre isk and stati	erved to carry to rfs*50 and the Methods and egate frequenci stical signification	the variant, and obser remaining variants. F Supplementary Note) ies of variant carriers nce (bottom row). Var	ved allele or p.Arg1 and then in cases a iant count

