

Current Topics in Genome Analysis 2016

Julia Segre

No Relevant Financial Relationships with Commercial Interests

Why the Human Microbiome?

Each human cell has the same proteinencoding potential. Microbes are more diverse and dynamic than human genome.

3

Human Microbiome

Humans are hosts to many microbes (bacteria, fungi, viruses)

Microbiome is totality of microbial community DNA

- Many microbes are often considered pathogenic
 - Mycobacterium tuberculosis
 - Staphylococcus aureus

Not all microbes are bad:
Beneficial microbes perform functions
essential for human health

- Vitamin synthesis
- -Digestion
- Education and activation of immune system
- Inhibition of skin colonization by pathogens

Many microbial-host and microbial-microbial interactions remain unknown

Elucidating the diversity of the human microbiome

- Traditional approaches rely on isolating bacteria in pure culture
- The majority of bacterial species do not grow in culture = "the great plate count anomaly"
- Culturing favors lab weeds--not necessarily the most dominant or influential species
- Excludes microbes that rely on community interactions

Topics for today's talk

- 1. Bacterial diversity studies: 16S rRNA
- 2. Fungal diversity studies: ITS1
- 3. Bacterial genomes: Shotgun sequencing
- 4. Metagenomics
- 5. Where is the technology going?

Important Issues to Consider Before Initiating Experiment

- 1. Study Design. Define the question as precisely as possible; e.g. 'I want to compare wild-type with knock-out mice.' → Are these mice littermates? Because there is a lot of variation between individuals, cages and facilities. What controls do you need?
- 2. What sequencing platform will you use?
- 3. What region of the 16S rRNA gene will you amplify?
- 4. How many reads do you need per sample?
- 5. What are hidden technical issues? CHIMERAS
- 6. What analysis tool will you use?
- 7. How will you display your data?
- 8. How will you compare your results with other published studies?
- 9. What information will yield a testable hypothesis?

13

Calculating Bacterial Load: qPCR with primers in conserved region of 16S rRNA gene

Human			Bacterial DNA			
DNA	300 pg		30 pg		3 pg	
	Ct	copy#	Ct	copy#	Ct	copy #
0 g	17.85	54924.50	20.92	6951.93	24.24	743.61
0.3 ng	17.78	57575.00	20.93	6905.28	24.42	658.74

 $C_{\rm t}$ of qPCR of bacterial DNA to calculate relative bacterial counts of each sampling method. Must also consider how to normalize sample. /cm² or /g stool?

- •Swab yields 10,000 bacteria/cm²
- •Scrape yields 50,000 bacteria/cm²
- •Biopsy yields 1,000,000 bacteria/cm²

Grice et al, Genome Research 2008 Castillo M...Gasa J...2006

DNA Sequencing to assess bacterial diversity

Illumina Mi-Seq (2 x 300 bp paired-end reads)

- 2 runs/week on one instrument.
- Costs \$2K, which is \$4/sample if you multiplex 500 samples.
- Scale is the issue. Need to dual-index bar-code primers for multiplexing since platform generates >10 million reads per lane. Assume 10,000 reads is more than enough per sample, you can multiplex 500+ samples together in one lane.

 Short reads, but can link paired reads. 	
Primer: 8F	_505R primer

For a SMALL study, SEQUENCE is limiting; For a LARGE study, BIOINFORMATICS is limiting.

Fadrosh DW...Ravel J Microbiome 2014; Kozich JJ....Schloss PD Appl Environ Microbiol 2013; Caporaso JG...Knight R ISME J 2012

Other means of sequence data acquisition

- Phylochip (16S rRNA microarray)
 - Limited to known taxa, but can get species-level designations
 - More expensive.
 - will never find unique or novel species

Hi-Seq Illumina (2 x 100 bp paired-end reads)

 Production sequencing. High output mode (TruSeq v3 chemistry) runs for 10 days and produces 4 billion clusters.

Alignment & Classification

- Reference-dependent
 - Ribosomal Database Project (RDP), SILVA, Greengenes
- But what about species?
 Amplify the appropriate region of 16S rRNA gene (V1-3 for Staphylococcus¹; or Lactobacillus²) and use custom database.
- Sequences with no reference? Not so many of those, might have to consider other explanations

¹Conlan, PLoS One 2012; ²Ravel PNAS 2011

to the scientific community, including online data analysis and aligned and annotated Bacterial and Archaeal small-subunit 165 rRNA sequences.

Wang et al., Applied and Environmental Microbiology (2007)

20

RDP Database http://rdp.cme.msu.edu/

- RDP 10.18 consists of 920,643 aligned and annotated 16S rRNA sequences. Naïve Baysian classifier based on Bergey's taxonomy. (Note: other taxonomies such as Euzeby and NCBI exist).
- Tools: RDP classifier, Segmatch, Probematch

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 2007, p. 5261–5267
0099-224007/\$08.00+0 doi:10.1128/AEM.00062-07
Copyright © 2007, American Society for Microbiology. All Rights Reserved.

Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy †
Qiong Wang, George M. Garrity, Lance M. Tiedje, Land James R. Cole Ribosomal Database Project (RDP) provides ribosome related data and services

RIBOSOMAL DATABASE PROJECT

BROWSERS | CLASSIFIER | LIBCOMPARE | SEQMATCH | PROBE MATCH | TREE BUILDER | PYRO | TAXOMATIC | SEQCART | ASSIGNGEN

RDP Release 10, Update 18:: Jan 25, 2010:: 1,358,426 165 rRNAs

The Ribosomal Database Project (RDP) provides ribosome related data and services

Comparing Bacterial Diversity: Community Membership & Structure

Grp A	Grp B	
60	50	
34	50	
2	0	
2	0	
2	0	

Community Membership (Categories of fruit in common) = 2/5 = 0.4Community

Structure (Pieces of fruit in common) = ~ 0.9

Microbial community profiling for human microbiome projects: Tools, techniques, and challenges

Micah Hamady and Rob Knight

Genome Res. 2009 19: 1141-1152 originally published online April 21, 2009 Access the most recent version at doi:10.1101/gr.085464.108

Experimental and analytical tools for studying the human microbiome

Justin Kuczynski¹, Christian L. Lauber², William A. Walters¹, Laura Wegener Parfrey³, José C. Clemente³, Dirk Gevers⁴ and Rob Knight³,5

TOPIC 3. BACTERIAL GENOME

- 1. What is study objective? E.g. Determine if two hospital isolates are clonal? Or Determine what genes are encoded by diverse set of Staphylococcus epidermidis?
- 2. What reference genomes exist for phylogenetic comparison?
- 3. What sequencing platform will you use?
- 4. What depth of sequencing do you need for assembly?
- 5. What assembly tool will you use? What alignment tool will you use?
- 6. How will you display your data?
- 7. How will you compare your results with other published studies?
- 8. What information will yield a testable hypothesis?

TOPIC 3. BACTERIAL GENOME How to Assemble a Bacterial Genome: Gram-negative is ~6,000,000 base pair

Shotgun sequence 2x300 bp fragments on Illumina MiSeq at 30-fold redundancy.

Overlapping reads form large DNA contigs with N50 of ~100 kb.

Or very low coverage (3-5X) just to define species and strain

- Celera
- Velvet
- SPAdes
- mira
- MaSuRCA
- ALL-PATHS

Hunt et al. Genome Biology 2014, 15:R42 http://genomebiology.com/2014/15/3/R42

A comprehensive evaluation of assembly scaffolding tools

Martin Hunt^{1*}, Chris Newbold^{2,1}, Matthew Berriman¹ and Thomas D Otto¹

41

Velvet (Zerbino and Birney, 2008)

- Works in base-space and color-space
- Good for small genomes
- Agnostic of read length
- 1. Construct k-mer hash
- 2. Build De Bruijn graph
- 3. Simplify graph
- 4. Resolve
 - 1. Tips
 - 2. Bubbles

Evaluating Assemblies

- Coverage is a measure of how deeply a region has been sequenced
- The Lander-Waterman model predicts
 8-10 fold coverage is needed to minimze
 the number of contigs for a 1 Mbp genome
- The N50 size is the point at which 50% of bases are in contigs this size or greater

43

Evaluating High Coverage Contigs

Genome Aligners: Compare sequences to identify sequence nucleotide variants, Insertion/Deletions

- 1. MumMER
- 2. MUGSY
- 3. MAUVE

Genome Annotation: Predicting and naming genes encoding proteins

- 1. PGAAP (NCBI)
- 2. IMG (JGI)
- 3. Glimmer, GeneMark

TOPIC 4. METAGENOMICS: DNA sequence from multiple organisms

Fungal, Bacterial, Viral, Archaeal DNA all together (with human DNA).

Very Complex mixture and very complex computationally.

Vol 455|25 September 2008

nature

MICROBIOLOGY

Metagenomics

Philip Hugenholtz and Gene W. Tyson

Ten years after the term metagenomics was coined, the approach continues to gather momentum. This culture-independent, molecular way of analysing environmental samples of cohabiting microbial populations has opened up fresh perspectives on microbiology.

Goals of whole genome shotgun metagenomic analysis

- 1. Want to know who's there & abundance
- 2. Want to know what they do (function)
 - Want to know what genes are present
 - Can we identify pathways?
 - Can we identify strains?
- 3. Can we recover genomes?
- 4. Can we find novel pathogenic organisms?

Metagenomics: types of bacteria similar between 2 populations, but pink genes enriched in top population

Using metagenomic sequencing to find new metabolic enzymes

Nature. 2007 Nov 22;450(7169):560-5. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite.

57

Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011 Jan 28;331(6016):463-7

Looking for function

· Leverage functional databases like

 Generally, use blastx-like programs to map reads to these databases

Why are strains important?

- Accessory genes determine much of a bacteria's function
- Strain stability determines whether prebiotics or probiotics can have a lasting effect;
- Understand the mechanism underlying new treatment modalities, such as fecal microbial transplant

Human DNA Admixture

- Important when dealing with humanderived samples
- Ethically, projects should attempt to filter human subject sequences before submission to public databases
- This is actually harder than it sounds

75

Topic 5: Where is sequencing technology now?

Now: Illumina MiSeq generates 2x300 bp paired end for amplicon and bacterial whole-genome sequencing.

HiSeq generates 200,000,000 reads/lane for metagenomics.

PacBio for long reads both for complete microbial genome assembly and shotgun metagenomics to scaffold reads.

Illumina MiSeq, HiSeq

•Bridge PCR

•300 or 100 bp read, paired end

Pacific Biosciences

LONG reads, accurate full genome assemblies with end-to-end coverage of chromosome and plasmids

Any new technology on the horizon before you give this talk again in 2 years?

Sequencing is just the start...
Koch's Postulates: The basis for assigning causality to an infectious disease.

1 microbe => 1 disease

- Microorganism abundant in diseased hosts and absent in healthy hosts.
- Microorganism isolated from diseased host and grown in pure culture.
- Cultured microorganism should cause disease when introduced into a healthy host.
- Microorganism must be reisolated from diseased experimental host.

