Introduction to Population Genetics

University of Utah School of Medicine 6 April 2016

Current Topics in Genome Analysis 2016

Lynn Jorde No Relevant Financial Relationships with Commercial Interests

- Patterns of human genetic variation
 - Among populations
 - Among individuals
 - How evolutionary factors influence variation
- · "Race" and its biomedical implications
- Linkage disequilibrium, evolution, and disease-gene identification

Allele frequencies in populations					
Population	SNV 1	SNV 2	SNV 3		
1	0.588	0.890	0.880		
2	0.671	0.559	0.528		
3	0.792	0.790	0.828		
<i>Average heterozygosity:</i> for each locus, obtain the proportion of heterozygous individuals by direct counting; average across loci					

1/1000 bp varies between a pair of individuals: how is this variation distributed between continents?

$$F_{ST} = \frac{H_T - \overline{H}_S}{H_T}$$

 F_{ST} is the amount of genetic variation that is due to population differences H_T is the total heterozygosity (variation) in the sample \overline{H}_S is the average heterozygosity within each population (continent) $F_{ST} = 0$: All variation exists within populations; none exists between $F_{ST} = 1$: All variation exists between populations

How is genetic variation distributed among continental populations?

	60 STRs	100 <i>Alu</i> s	75 L1s	250K SNP	
Between individuals, within continents	90%	86%	88%	88%	
Between continents (F _{ST})	10%	14%	12%	12%	

 F_{ST} : proportion of variation attributed to population subdivision

Jorde et al., 2000, Am. J. Hum. Genet. J. Xing et al., 2009, Genome Res.

How is genetic variation distributed among continental populations?

	60 STRs	100 <i>Alu</i> s	75 L1s	250K SNP	Skin pigment- ation
Between individuals, within continents	90%	86%	88%	88%	10%
Between continents (F _{ST})	10%	14%	12%	12%	90%

Jorde et al., 2000, Am. J. Hum. Genet. J. Xing et al., 2009, Genome Res.

% common SNPs shared among four major
regions (Africa, Europe, E. Asia, India):
250K chip results for ~1,000 samples

Minor allele present in:	
All 4 groups	78.6%
At least 3 groups	88.0%
At least 2 groups	92.1%
Africa only	7.4%
Any non-African group	0.5%
No SNPs were fixed present in one p	population, fixed
absent in another	J. Xing et al., 2010, Genomics

Genetic distance	analysis: 15 loci
	•
• Iceland	
Carrown Carrown	
•Norway •Sweden Netherlands •Denmark	Finland •
•Mormon •England	
U.S. •Germany	
•Switzerland	
•France	
	Poland•
• Spain	
	•
ltaly •	
McL	ellan, Jorde, and Skolnick, 1984, Am. J. Hum. Gener

Sequence data permit more accurate inferences about population history

- Microarray SNPs are selected for higher frequency and diversity in Europeans
- Complete DNA sequences are unbiased and include information about rare variants
- Coalescence methods can be used effectively with sequence data

The spectrum of human genetic variation

	AI	FR	AM	//R	EA	AS	EL	JR	5	SAS
Samples Mean coverage		61 8.2		347 7.6		504 7.7		i03 7.4		189 8.0
	Var. sites	Singletons								
SNPs	4.31M	14.5k	3.64M	12.0k	3.55M	14.8k	3.53M	11.4k	3.60M	14.4k
Indels	625k	-	557k	-	546k	-	546k	-	556k	-
Large deletions	1.1k	5	949	5	940	7	939	5	947	5
CNVs	170	1	153	1	158	1	157	1	165	1
MEI (Alu)	1.03k	0	845	0	899	1	919	0	889	0
MEL(L1)	138	0	118	0	130	0	123	0	123	0
MEI (SVA)	52	0	44	0	56	0	53	0	44	0
MEI (MT)	5	0	5	0	4	0	4	0	4	0
Inversions	12	0	9	0	10	Ō	9	Ō	11	Ō
Nonsynon	12.2k	139	10.4k	121	10.2k	144	10.2k	116	10.3k	144
Synon	13.8k	78	11.4k	67	11.2k	79	11.2k	59	11.4k	78
Intron	2.06M	7.33k	1.72M	6.12k	1.68M	7.39k	1.68M	5.68k	1.72M	7.20k
UTR	37.2k	168	30.8k	136	30.0k	169	30.0k	129	30.7k	168
Promoter	102k	430	84.3k	332	81.6k	425	82.2k	336	84.0k	430
Insulator	70.9k	248	59.0k	199	57.7k	252	57.7k	189	59.1k	243
Enhancer	354k	1.32k	295k	1.05k	289k	1.34k	288k	1.02k	295k	1.31k
TFBSs	927	4	759	3	748	4	749	3	765	3
Filtered LoF	182	4	152	3	153	4	149	3	151	3
HGMD-DM	20	0	18	0	16	1	18	2	16	0
GWAS	2.00k	Ō	2.07k	Ō	1.99k	Ō	2.08k	Ō	2.06k	Ó
ClinVar	28	0	30	1	24	0	29	1	27	1

A "typical" human genome				
Protein truncating	149 - 182			
Peptide altering	10,000 -12,000			
Regulatory (UTR, TBS, promoter, etc.)	459,000 - 565,000			
Associated with complex trait	~2,000			
ClinVar disease causing	24 - 30			

Drift has increased the frequencies of several disease-causing mutations

- Three founder mutations in *BRCA1* or *BRCA2* are seen in 2.5% of Ashkenazi Jews (1/200 in general population)
- APC mutation predisposing to colorectal cancer is seen in 6% of Ashkenazi population
- Several lysosomal storage disorders (Gaucher, Niemann-Pick, Tay-Sachs) are relatively common

My Home Inbox (3)	paternal line	
Health Clinical Reports Research Reports	Your Y chromosome DNA determines your paternal haplogroup. What is a haplogroup Map History Haplogroup Tree	oup? tell a friend
Health Labs Health Labs Ancestry Matemal Line ▶ Patemal Line Relative Finder Ancestry Painting Global Similarity	Paternal Haplogroup: [1*] It's a subgroup of I1, which is described below. Locations of haplogroup I1 circa 500 years ago, before the era of intercontinential travel. Locations of haplogroup I1 circa 500 years ago, before the era of intercontinential travel. Locations of haplogroup I1 circa 500 years ago, before the era of intercontinential travel. Locations of haplogroup I1 circa 500 years ago, before the era of intercontinential travel. Locations of haplogroup I1 circa 500 years ago, before the era of intercontinential travel. Locations of haplogroup II circa 500 years ago, before the era of intercontinential travel. Locations of haplogroup II circa 500 years ago, before the era of intercontinential travel. Locations of haplogroup II circa 500 years ago, before the era of intercontinential travel. Locations of haplogroup II circa 500 years ago, before the era of intercontinential travel. Locations of haplogroup II circa 500 years ago, before the era of intercontinential travel. Locations of haplogroup II circa 500 years ago, before the era of intercontinential travel. Locations of haplogroup II circa 500 years ago, before the era of intercontinential travel. Locations of haplogroup II circa 500 years ago, before the era of intercontinential travel.	Haplogroup: [1, a subgroup of] Age: 28.000 years Region: Northern Europe Populations: Finns, Norwegians, Swedes Highlight: Haplogroup 11 reaches highest frequencies in Scandinavia.
Ancestry Labs Sharing & Community Compare Genes Family Inheritance 23andMe Community 23andWe My Surveys (31) Research Initiatives	Africa Ocean South America Ocean South America Ocean Ocean South America Ocean Australia Ocean Australia Ocean Australia Office Sofie T00% America Office Of	Your Family and Friends D2atb Japanese Person Etbta8aNigerian Person ItLynn Jorde ItChinese Person
	Human Prehistory Videos Human Prehistory: Prologue	C3 Genghis Khan 1 Jimmy Buffett, Warren Buffett 1a Alexander Hamilton
	Out of (Eastern) Africa	R1b John Adams I Thomas Jefferson Tell Me About

What do these findings imply for biomedicine?

- Large numbers of independent DNA polymorphisms can inform us about ancestry and population history
- These variants typically differ between populations only in their *frequency* and imply substantial overlap between populations

Recombination hotspots LD patterns indicate 25,000 - 50,000 hotspots in human genome (1 every 50 – 100 kb) (Myers et al., 2005, *Science*) 60% of all recombination occurs in 6% of genome) (Coop et al., 2008, *Science* 319: 1395-8) Hotspots are not congruent in human and chimpanzee and vary among human populations

Examples of genes in which elevated LD indicates recent positive selection

Gene	Phenotype
G6PD	Malaria protection
CYP3A5	Sodium retention
LCT (lactase enhancer)	Lactase persistence
SLC24A5	Skin pigmentation
EPAS1, EGLN1	High-altitude hypoxia response

Voight et al., 2006, PLOS Biology; Simonson et al., 2010, Science; Grossman et al., 2013, Cell

Population genetics is guiding development of new sequence analysis resources

- 1000 Genomes Project
 - Provides "control sequences" for variant analysis
 - Most rare variants are population-specific
- When is a variant functionally significant?
 - Functional regions show more purifying selection (VAAST software: M. Yandell *et al.*, 2011, *Genome Res.*; pVAAST: Hu *et al.*, 2014 *Nature Biotech.*)
 - Evolutionary conservation among species; especially useful for noncoding DNA

