PHARMACOGENOMICS: 2016

Dr Howard L. McLeod Medical Director, DeBartolo Family Personalized Medicine Institute

Senior Member, Division of Population Sciences

Current Topics in Genome Analysis 2016

Howard McLeod

Cancer Genetics Inc
Paid Member of Board

The clinical problem

- •Multiple active regimens for the treatment of most diseases
- Variation in response to therapy
- Unpredictable toxicity

\$\$\$\$\$\$\$\$\$\$\$\$\$\$

With choice comes decision

Adverse Drug Events Potential for Pharmacogenomics to Decrease Risk

- An estimated 2 to 4 million persons suffer from a serious, disabling, or fatal adverse drug event each year
- In the United States, adverse drug events cause over 700,000 emergency room visits each year
- •Over 120,000 of those emergency room visits result in further hospitalization
- Approximately 100,000 deaths per year attributed to adverse drug events

Institute for safe medication practices Quarter Watch 2012
Institute for safe medication practices Quarter Watch 2013
http://www.cdc.gov/MedicationSafety/Adult_AdverseDrugEvents.html

Emergency Department Visits by Adults for Psychiatric Medication Adverse Events

JAMA Psychiatry

		ED Vi	sits for Adverse Drug Event	is ^b		
		Estimated Annual No. of Visits		Estimated Annual ED Visits per 10 000		
Medication Category and Class ^a	No. of Cases		Proportion of Category Visits	Hospitalization Rate	Outpatient Prescription Visits, No. (95% CI) ^c	
Sedatives and anxiolytics	1371	30 707	NA	23.5	3.6 (3.2-4.1)	
Antidepressants	1076	25 377	NA	12.4	2.4 (2.1-2.7)	
Antipsychotics	1055	21 578	NA	15.3	11.7 (10.1-13.2)	
Lithium salts	197	3620	NA	53.6	16.4 (13.0-19.9)	

Estimated that ~ 90,000 patients visit ED each year due to psychiatric drug-induced adverse events

Hampton et al, JAMA Psychiatry 71(9); 2014

PERSONALIZED MEDICINE, SCHMERSONALIZED MEDICINE!

- Medicine has always been personalized
- Medicine is moving toward greater 'customer accountability'
- Medicine will never be personalized
- it is a change in expectation as well as some practical, process changes

DeBartolo Family PERSONALIZED MEDICINE INSTITUTE

MOFFITT (M)

DRIVERS OF PRECISION MEDICINE

- Technology
 - Significant new opportunities over the past 5 years
- Patient financial burden
 - When you are paying more, you want more say
- Less personal care
 - Who will be my 'doctor' today?
- Cost of care
 - Even the USA can't afford treating 100% to benefit 20%

13

Pharmacogenomic examples-2016

- bcr/abl or 9:22 translocation—imatinib mesylate*
- HER2-neu—trastuzumab**
- C-kit mutations—imatinib mesylate**
- Epidermal growth factor receptor mutations—gefitinib
- **BRAF-vemurafenib**
- **ALK-Crizotinib**
- **ROS-1** Crizotinib
- UGT1A1-irinotecan**

- HLA-B*5701-abacavir .
- IL28B-interferon
- **CFTR-ivacaftor**

codeine derivatives*

CYP2C19-clopidogrel, v CYP2D6-5-HT3 recepto

Pain control

TPMT-mercaptopurine a Antiemetics

CYP2C9/VKORC1-warfa Antidepressants

HLA-B*1502-carbamaze ADHD drugs

Anticoagulants

Not just tumor markers!!

DeBartolo Family PERSONALIZED MEDICINE INSTITUTE

CPIC: Clinical Pharmacogenetics Implementation Consortium

- The Clinical Pharmacogenetics Implementation Consortium (CPIC) is a shared project between PharmGKB and the Pharmacogenomics Research Network
- **CPIC** guidelines are designed to help clinicians understand HOW genetic test results should be used to optimize drug therapy
- Once published the guidelines are updated periodically http://www.pharmgkb.org

Relling and Klein, Clin Pharmacol Ther. 89(3): 464-7; 2011 DeBartolo ramily Personalized Medicine Institute

CPIC Guidelines on PharmGKB CPIC Dosing Guideline for allopurinol and HLA-B CPIC Dosing Guideline for amitriptyline and CYP2C19, CYP2D6 amitriptyline CPIC Dosing Guideline for azathioprine and TPMT capecitabine CPIC Dosing Guideline for capecitabine, fluorouracil, tegafur and DPYD carbamazepine CPIC Dosing Guideline for carbamazepine and HLA-B CPIC Dosing Guideline for clomipramine and CYP2C19, CYP2D6 CPIC Dosing Guideline for clopidogrel and CYP2C19 CPIC CPIC Dosing Guideline for codeine and CYP2D6 codeine CPIC Dosing Guideline for desipramine and CYP2D6 desipramine CPIC Dosing Guideline for doxepin and CYP2C19, CYP2D6 fluorouracil CPIC Dosing Guideline for capecitabine, fluorouracil, tegafur and DPYD imipramine CPIC Dosing Guideline for imipramine and CYP2C19, CYP2D6 CPIC Dosing Guideline for nortriptyline and CYP2D6 peginterferon alfa-2a CPIC Dosing Guideline for peginterferon alfa-2a, peginterferon alfa-2b, ribavirin and IFNL3 peginterferon alfa-2b CPIC Dosing Guideline for peginterferon alfa-2a, peginterferon alfa-2b, ribavirin and IFNL3 CPIC Dosing Guideline for peginterferon alfa-2a, peginterferon alfa-2b, ribavirin and IFNL3 CPIC Dosing Guideline for simvastatin and SLCO1B1 simvastatin CPIC Dosing Guideline for capecitabine, fluorouracil, tegafur and DPYD CPIC CPIC Dosing Guideline for trimipramine and CYP2C19, CYP2D6 trimipramine CPIC Dosing Guideline for warfarin and CYP2C9, VKORC1

REASONS FOR PRECISION MEDICINE

- Testing for avoidance
- Testing for inclusion
- Testing for stratification
- Testing for explanation

19

DeBartolo Family
PERSONALIZED MEDICINE INSTITUTE

MOFFITT (M)

	Primary pathway	Secondary pathway
Hydrodolasetron (active metabolite of dolasetron)	CYP2D6	СҮРЗА
Granisetron	CYP3A	
Ondansetron	CYP3A4	CYP1A2 CYP2D6 CYP2E1
Palonosetron	CYP2D6	CYP3A CYP1A1/2
Tropisetron	CYP2D6	CYP3A4

Toxicity Endpoints and Competing Risks in 90401 cohort (n=810)

	Docet	axel Tox	cicities	Bevacizumab T				oxicities			
	Neutropenia		Neuro- Hyper pathy		tension Prote		inuria	Thrombosis		Hemorr- hage	
	3+	4+	3+	2+	3+	2+	3+	2+	3+	2+	
Toxicity Endpoint	285 36%	161 20%	57 7%	86 11%	34 4%	44 6%	10 1%	53 7%	49 6%	79 10%	
Completed tx w/o toxicity	2%	3%	4%	3%	3%	3%	4%	3%	3%	3%	
Death/Progres.	31%	37%	40%	36%	38%	38%	39%	38%	39%	39%	
Tx Terminating Adverse Event	19%	26%	32%	34%	37%	36%	38%	34%	35%	31%	
Withdrew/ other	12%	14%	17%	16%	18%	17%	18%	18%	18%	18%	

- Prioritize GWAS by:
 - Clinical relevance of toxicity
 - Toxicity event rate
 - Note: half of patients received bevacizumab
 - Likelihood of genetic causal factor
 - Absence of strong confounding

Phenotype Cleaning for Competing Risks Analysis

- Distinct dataset for each toxicity endpoint GWAS
 - Categorize patients for toxicity of interest or treatment completion
 - Patients who discontinued treatment without experiencing toxicity endpoint categorized by reason for discontinuation (competing risk)
 - · Death or progression
 - Treatment terminating adverse event (TTAE)
 - Withdrawal/other
- Each toxicity or competing risk assigned dose-at-event

CALGB 90401 Pharmacogenomic Substudy

- Aim
 - Discover loci that modulate toxicity risk in prostate cancer patients treated with docetaxel ± bevacizumab
- Separate GWAS for each toxicity of interest
 - Docetaxel: <u>neuropathy</u>, neutropenia
 - Bevacizumab: hypertension, proteinuria, hemorrhage, thrombosis
- Use dose-to-event Cox proportional hazards model for subdistributions
 - Cumulative docetaxel dose (mg/m²) at grade 3+ sensory neuropathy occurrence
 - Adjust for relevant clinical covariates
 - Age (continuous)
 - · Diabetes (yes vs. no)
 - BMI (>30 kg/m² vs. other)
 - Treatment arm (bevacizumab vs. placebo)

Neuropathy GWAS

- 810 Subjects consented and genotyped on Illumina 610 quad
 - Discovery in 623 genetically defined European patients
 - 187 patient replication cohort (genetically defined non-European)
- · No SNP reached genome-wide significance before adjustment
- · Created priority SNP list based on:
 - P-value/rank
 - Biological plausibility
 - · Previously reported associations
 - Gene function
 - · LD with functional variant
 - Regulation of gene expression
 - Encode data

Neuropathy GWAS Priority SNPs Plausible Biological Mechanism rsID Gene MAF P-value Adj p-val HR Rank 0.22 7.2E-8 4.7E-7 2.83 FGD3 rs10761189 3.1E-6 5.3E-6 2.32 FGD4 (40101) Neuronal outgrowth & OPCML 0.30 4.8E-6 8.3E-6 connectivity (CNS) Highly expressed in the DOK 6 0.23 1.1E-5 3.4E-5 2.30 developing CNS

1.3E-4

OPCML

Relevant to neuronal

Neuronal outgrowth &

connectivity (CNS)

Hertz et al Clin Cancer Res in press

Docetaxel vs. Paclitaxel (Clinical data: SCOTROC1) **Accrual of 1077 Pts With:** · Stage IC-IV epithelial ovarian cancer • ECOG PS 0-2 · No prior history of CT or RT **RANDOMISATION** Paclitaxel 175 mg/m² 3-hr IV, followed by Docetaxel 75 mg/m² 1-hr IV, followed by Carboplatin AUC 5* IV Carboplatin AUC 5* IV Repeat q 3 wk for up to 6 cycles Repeat q 3 wk for up to 6 cycles **Study End Points** Primary: progression-free survival Secondary: response rate, overall survival, toxicity, QOL CANCER RESEARCH UK

Sarah Glass, Alison Motsinger-Reif, Sharon Marsh,

Bob Brown, Jim Paul

Table 1: SNPs significantly associated with severe neurotoxicity in the validation cohort

SNP	Gene	Base Change	Correcte Od e d P-value Ra		95% CI	Risk Genotype
rs139887	SOX10	C->G	0.001	2.87	(1.4361, 5.7530)	CG
rs2849380	BCL2	A->G	0.013	4.08	(1.5254, 10.8975)	AA
rs544093	OPRM1	A->C	0.015	2.25	(1.2365, 4.0841)	AA
rs879207	TRPV1	A->G	0.002	2.31	(1.4467, 3.6767)	AG

Table 2: Percent PAR for each SNP and joint PAR

	rs139887	rs2849380	rs544093	rs879207	All SNPs	
PAR (%)	45.8	9.1	50.2	38.4	84.9	

J Clin Oncol. 2013 May 20;31(15):1834-41

HISTOLOGY-INDEPENDENT, ABERRATION-SPECIFIC CLINICAL TRIAL DESIGN "Basket Trial" Eligibility is based on molecular aberrations rather than anatomical origin of a cancer

DeBartolo Family

PERSONALIZED MEDICINE INSTITUTE

MOFFITT (M)

ACKNOWLEDGEMENTS

Clinical and Research Faculty

- Chris Walko
- Nancy Gillis
- J. Kevin Hicks
- Todd Knepper
- Tuya Pal
- Alvaro Monteiro
- Tony Magliocco
- Eduardo Sotomayor
- Eric Padron
- Eric Haura
- Peter Kanetsky
- Debi Cragun
- Clinical Genomic Action Committee

EHR

- Jennifer Greenman
- John McFarland

Finance

- Karen Wartenberg
- Jackie Chalarca
- Diane Blazevick
- Ginny Mikos
- Elissa Clayton

Information Shared Services

Vonetta Williams

Legal

• Cole Peterson

Strategic Development

- Diane Hammon
- John Christenson

7

