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Meeting Summary 

Welcome / Objectives 

The purpose of this meeting was to review the scientific progress in the area of missing heritability and 

identify: 1) what we have learned since the first missing heritability workshop in 2008, 2) what has been 

and/or will be the value of identifying the sources of missing heritability, and 3) what research can 

and/or should be pursued to determine these sources.  

  

Impact of missing heritability publication in Nature (Orli Bahcall)  

Orli Bahcall addressed the impact of missing heritability by pointing out that the concept arose as 

genome-wide association studies (GWAS) were increasingly published after 2005; reviews of the 

usefulness of GWAS were not always favorable. Since then, however, there has been a lot of discovery in 

gene-disease associations and the GWAS method has been the driver.  

  

The review produced by the first Missing Heritability workshop has been cited more than 4,000 times 

and the field-weighted citation impact is comparable to other highly-cited reviews published by Nature. 

This has sparked the generation of more reviews addressing missing heritability and bringing attention 

to the issue for others in the field. We need to start thinking of how this missing heritability problem has 

influenced research directions and whether it has changed the public perception of human genetics.  

  

Missing heritability circa 2009 (Teri Manolio)  

During the first Missing Heritability workshop in 2008, the GWAS method was about 3 years old and had 

identified hundreds of associated variants. Most of those conferred small increments in risk and 

explained only a small portion of heritability (h2). As an example, 40 loci for height explained 5% of the 

phenotypic variance, but the estimated h2 was about 80%, raising the question of how to identify 

sources of this missing heritability. Proposed explanations included that there could be a much larger 

number of variants of smaller effect, rarer variants (with possibly larger effects), structural variants (SVs) 

poorly detected by available arrays, potential gene-gene (gxg) and gene-environment (gxe) interactions 

and correlations, inadequate accounting for shared environment, and over-estimation of h2. Since then 

there has been much progress in exploring these explanations. We need best approaches for combining 

functional and statistical evidence, using common SNPs to predict and control for differences in rare 

SNPs, and pooling variants by classes and minor allele frequencies (MAF). Accounted-for heritability has 

increased since 2008 with increasing numbers of alleles discovered to influence a trait. Methods have 

improved, including more accurate algorithms for SV detection. The NHGRI-EBI GWAS catalog 

(https://www.ebi.ac.uk/gwas/) shows that in 2008, there weren’t any known associated rare alleles 

(MAF < 0.005); 12 high-effect common variants (MAF > 0.05) were known, and only 4 low frequency 

(0.005 < MAF < 0.05) and moderately high odds ratio (1.5 < OR < 3.0) variants were identified. By April 

2018 these numbers were much higher with about 24 rare alleles identified, 142 low-frequency 

moderate effect variants, 111 high-effect (OR > 3.0) common variants, and almost 5,000 common low 

effect (< 1.5) variants. Most rare variants were discovered in sequencing studies and not through GWAS.  

 

https://www.ebi.ac.uk/gwas/
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Quantifying the genetic architecture and heritability of complex traits: estimation and prediction 

(Peter Visscher)  

Yang et al. in 2010 Nature Genetics showed the substantial amount of variance captured by low effect-

size loci. Most of the h2 is not missing but has not been detected because the individual effects were too 

small to pass stringent significance tests. About 45% of variance in height, for example, can be explained 

if all genotyped SNPs are considered simultaneously, irrespective of statistical significance. In addition, 

as GWAS sample sizes increase, more genome-wide significant (GWS) loci are discovered. New data 

generated since 2009 include GWAS summary statistics, larger GWAS, transcriptional and epigenetic 

resources, fully sequenced reference panels with imputation accuracy down to MAF = 0.005, and large 

single-cohort studies. New methods include GREML (estimating genetic variation without hypothesis 

testing), linkage disequilibrium (LD) score regression, and prediction methods.  

  

Height has been a well-studied trait for assessing explained variance. Mendelian forms of “tallness” and 

“shortness” exist, but most variation is polygenic. In partitioning the variance of height, heritability 

based on twin or family studies is 80%, within-family estimates are 70%, SNP heritability from 

imputation to sequenced reference is 60%, SNP-heritability (variance explained by all genotyped SNPs 

on an array) is 45%, and variance explained by GWS SNPs is 25%. Hidden h2, if the SNP-h2 estimates are 

correct, is generally due to lack of study power. Overestimation, untagged variants and disease 

heterogeneity are other possible explanations for the missing h2. The key experiment (analysis) that is 

needed to better understand the gap between SNP-heritability and estimates of heritability from family 

data is to estimate heritability from a sufficiently large sample of individuals with WGS data. If such an 

analysis recovers the full pedigree heritability from WGS data then there is no more missing heritability 

and the problem can be considered as ‘solved’. 

  

Further issues include the difference between within-family and population estimates of SNP effects. 

Population samples suffer from population stratification, gene-environment (G-E) correlation, and 

assortative mating. Prediction from DNA sequence (or imputed SNP arrays) is limited by how much 

phenotypic variance is captured by all variants and how well the effects of all variants are estimated. 

GWAS data show little evidence for non-additive genetic variance when investigated at genome-wide-

significant (GWS) loci or when estimating dominance variance from all SNPs simultaneously. However, 

the loss of information due to imperfect LD is larger for non-additive effects than it is for additive 

effects, and this can contribute to a lack of power to detect gxg interactions from population data. 

 

Model organisms could help infer environmental impact on missing heritability. Genes shape behavior 

and behavior profoundly affects environmental factors, therefore environmental tracking studies should 

be integrated with genetic studies and not separated. The UK Biobank is a good example of an 

integrative study that collected exercise and other lifestyle information. The All of Us cohort project also 

plans on using wearable devices and biomarkers to improve measurement of environmental factors.  

 

Discussion  

If all the SNPs in a genome are implicated, unless all effects are infinitesimal, then they are diluting the 

impact of the causative SNPs. Heritability estimation should be considered in the context of prediction; 
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there isn’t a good way of ensuring that the identified rare variants of large effect are actually causative. 

Whole genome sequencing (WGS) can be used to estimate genetic variance in addition to discovering 

variants. In addition, although GWAS is now over 12 years old, there’s still very little information from 

non-European populations. Expanding GWAS to diverse populations will allow for novel discoveries and 

strengthen the imputation.  

  

SNP-based heritability is based on some measure of how phenotypically similar pairs of individuals in a 

population are, even without a known pedigree relationship. It might be useful to compare findings 

across the whole range, from studies with unrelated individuals to traditional studies with twins and 

families, and look at the trends.  

   

Relatively little work has been done on the genetics of disease progression, though there have been 

some efforts in diabetes and renal disease. One of the main challenges in this area is getting phenotypic 

information on patients and generating phenotypic algorithms to predict disease progression. For these 

algorithms to show accurate results we need to factor in the environment, transcriptome, genetic 

variance, and genetic effects modified by the onset of the disease. The genetic factors contributing to 

variation between people for disease progression and for response to treatment may be different from 

the genetic factors contributing to variation between people in disease onset. 

  

In the early days of GWAS there were efforts to study heritability in affected siblings, but if parents are 

genotyped analyses are much more powerful. To compare estimates from siblings with SNP/pedigree 

estimates, larger sample sizes are needed. UK Biobank currently includes about 80,000 sib pairs, which 

for many traits is sufficient, however for any particular trait there is need for more samples.  

 

Quantifying (missing) heritability for common disease from GWAS data (Naomi Wray)  

In psychiatric disorders the difference between SNP-h2and pedigree-h2 is much larger than the 

difference seen in quantitative traits. Subtle confounding also has a greater impact on discrete than 

continuous traits. If the missing h2 is greater for binary disease traits than for quantitative traits despite 

the same technology, then the assumptions of the methodology are not upheld, there are technical 

artifacts, and/or assumptions about genetic architecture are incorrect. A study of amyotrophic lateral 

sclerosis (ALS) in 171 twin pairs estimated h2 at 61%, for example, but a similar diagnosis in a second 

twin is more likely once their co-twin is diagnosed. Schizophrenia has been studied more extensively 

with twin-based h2 estimates up to 81%. In contrast, a study of common genetic determinants of 

schizophrenia using 9 million Swedish national records estimated h2 at 64-67%. The LD score regression 

method likely underestimates h2 in disease traits but is helpful as a quick benchmark.  

  

Key challenges in binary disease datasets are restricted sample sizes of disease cases vs. controls and 

greater variability in their ascertainment. Additional challenges include overestimation of h2 in pedigrees 

and a tendency to infer a greater level of accuracy than the data deserve. Residual population 

stratification may be confounding case-control comparisons, and disease-specific architectures increase 

the complexity of defining h2, as do unknown genetic heterogeneity and polygenicity.  
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For common diseases and disorders the difference between SNP-h2and pedigree-h2 is larger than the 

difference seen in quantitative traits, despite the same genotyping and imputation strategies. Possible 

explanations for this observation include technical artifacts, the assumptions of the methodology are 

not upheld, and/or the genetic architectures of common disease are different to those of binary traits. 

Technical artifacts are more likely in disease traits than continuous traits as subtle confounding between 

the binary values of the trait and genotyping experimental design or population stratification may be 

difficult to resolve fully through statistical analysis. Assumptions of methodology that could contribute 

to the difference between SNP-h2and pedigree-h2 may reflect that estimates of heritability for disease 

are likely less reliable than those for quantitative traits. For example, the estimate of heritability usually 

quoted for ALS of 61% is estimated from 171 twin pairs. Schizophrenia has been studied more 

extensively and usually heritability is quoted as 81% from a meta-analysis of mostly twin-based 

estimates. However, a study of common genetic determinants of schizophrenia using 9 million Swedish 

national records estimated h2 at 64-67%, with a similar estimate made from Danish national records. 

Heritability estimates (both family-based and SNP-heritability) are made on the liability scale, which 

includes methodological assumptions that may not be upheld. The LD score regression method likely 

underestimates h2 in disease traits but is useful as a quick benchmark. Haseman-Elston methodology is 

the most robust method for estimation of SNP-h2 when there is very extreme ascertainment.    

 

The greater difference between pedigree h2 and SNP-h2 estimates for disease compared to quantitative 

traits may also reflect true differences in genetic architecture. One explanation could be a greater 

contribution from rare variants, but whole exome sequencing studies (which have been highly successful 

in identifying rare variants of large effect in severe childhood syndromes) have been less successful in 

similarly powered studies for common disorders (psychiatric disorders, type 2 diabetes, inflammatory 

bowel diseases), implying that rare variant effect sizes will also be small. Rare variants of large effect 

likely lead to more severe childhood diagnoses than to common disorders with onset typically later in 

life. Another explanation for the greater difference between pedigree- and SNP-h2 estimates for disease 

compared to quantitative traits may be the heterogeneity in clinical diagnoses, in which multiple (but 

likely correlated) biological routes could lead to clinical presentations that attract the same diagnosis. 

This is perhaps the most important explanation to investigate in future studies and it may have 

downstream consequences for precision medicine, i.e., the stratification of patients to drug treatments. 

 

Whatever the explanation of the greater difference between pedigree- and SNP-h2 estimates for 

common diseases vs quantitative traits, larger samples with more detailed phenotyping and with 

consistent phenotyping across cohorts will help to resolve them. Continuing to focus on increasing 

sample size is a priority for common diseases. 

 

Rare variants (David Goldstein)  

Clinical diagnostic sequencing can be used as a paradigm for studying rare variants in Mendelian 

diseases. The diagnostic analysis framework includes identifying rare and functional variation in genes 

having known associations with disease, looking for extremely rare sequence variants of high technical 

quality that preferably are previously reported pathogenic or at the same or adjacent genomic sites, or 

that show loss of function (LoF) in genes known to be depleted for LoF variants. The methodology is 
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remarkably effective, identifying causative variants in roughly a quarter of patients even when their 

conditions are considered genetically complex. Often causative variants can be identified from extreme 

rarity in population databases without needing to sequence the parents and infer their de novo origin. In 

general, association signals are much stronger in individuals with known positive family histories than 

those without, which isn’t surprising, but that it’s so dramatically less in “sporadic” cases is surprising as 

many of these are probably familial and just don’t have extensive family information. Signal comes 

entirely from the rarest variants that appear to have been kept out of the population, with no 

continuum between rare and common variation. This implies they’re all very recent and restricted to 

small families, which has significant implications for precision medicine.  

 

High effect alleles depend on the disease. Some diseases have an early-onset and thus more 

evolutionary pressure due to which risk variants have increased in prevalence. Sequencing in presumed 

common, complex diseases such as chronic kidney disease can identify a small but significant proportion 

with monogenic etiologies such as Alport’s syndrome, which has profound implications for treatment 

and screening of family members. Similarly (though anecdotally), a patient with presumed non-alcoholic 

fatty liver disease was sequenced and found to have Wilson’s disease, a highly treatable condition that 

had been missed clinically. The group agreed that Mendelian diseases are associated with a wide range 

of presentations and often the line between Mendelian and complex disease is hard to distinguish.  

 

Monogenic contributions to complex traits: scaling pleiotropy (Judy Cho)  

Health-system based biobanks have several advantages over the simplistic case vs. control model. 

Health systems have enormous “phenotype” data including labs, radiology and pathology data. 

Development of disease is time-dependent, and through these records we can look at progression and 

have data on many endpoints. Age-dependent prevalence of hypertension is an example of a disease 

that can be studied in these cohorts. Monogenic forms of hypertension are estimated to be 3-5% of all 

cases and a genetics-first approach is needed to identify the early cases. 

 

Primary immunodeficiencies are under-diagnosed diseases with viral and bacterial infections that are 

very common. There is a likely continuum of genetic differences in the capacity to fight infections due to 

major evolutionary selection. Unusual phenotypic characteristics such as two major infections before 

age 50 in a non-alcoholic can help identify patients with primary immunodeficiencies. This group of 

diseases is defined by a crucial time element with decreased capacities at extremes of age. Pleiotropy 

may be expected or unexpected; IL23R demonstrates “expected” pleiotropy as an IBD (Crohn’s disease 

(CD) and ulcerative colitis (UC)) gene. The majority of inflammatory bowel disease (IBD) loci show similar 

trends between CD vs. UC, but there is also unexpected pleiotropy with a strong protective association 

against tongue-tie. In cystic fibrosis (CF), a multi-organ recessive Mendelian disease where the chloride 

channel is defective, heterozygous CFTR carriers present with recurrent pancreatitis phenotypically 

distinct from CF patient manifestations, showing the need for systematic evaluation of these carriers. 

 

Ashkenazi Jews have been studied for a variety of diseases. They show a 3-fold higher prevalence of IBD 

vs. non-Jewish Europeans due to a much higher functional effect size of NOX1 variants in Jews, even 

though variants are present in both European populations. An example of unexpected pleiotropy is in 
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Jewish predominant mutations of the LRRK2 gene. Protein-altering variants in LRRK2 include distinct risk 

and common protective variants between Parkinson’s and Crohn’s. 

 

Next steps for studying monogenic genes in complex traits should include a gene-centric view of disease 

pathogenesis, systematic analysis of biobank-based genetic data to provide specific medical context to 

phenotypic variability of monogenic or high-effect genetic variants, exploration of population 

differences, and domain-based sequence annotation. Increased appreciation of the ubiquity of 

pleiotropy should lead to investigation of modifying factors such as age and time, recognizing that 

phenome coverage is more limited than genome coverage.      

 

Discussion  

Pure exome rare variant studies have paved the way to some informative findings, but the issue is still 

very complex. 80-85% of GWAS signals are not in the coding region. Non-coding variants of large effect 

are rare due to the very extensive buffering capacity of cells/organisms. Modulation of gene expression 

is very contextual, complex, and difficult to interpret in an experiment. Tools for analyzing regulatory 

variants are really poor right now, the actual mutation target is very small, the mutational target space is 

very large, and there are very few bases that when mutated create a strong phenotype. The solution to 

this could come with perfecting and applying cell-based analysis.   

 

The nature of the connection between genes and phenotype is still very hard to define. We might have 

to think about gene networks influencing disease rather than direct gene to phenotype pathways. 

Unexpected pleiotropy is to be expected; in many experimental designs, the more phenotypes you study 

the more pleiotropy you find.  

 

Functional follow-up of findings is an unmet need. It can be accomplished by leveraging the functional 

domains. There is an undervaluation of domains in the field and deeper functional annotation of 

variants would be productive. Moreover, combining functional and statistical evidence has been 

anecdotal to date and the more we look the more we find. Systematic mutagenesis will allow for scaling 

and this will be facilitated by sequencing phenotype-linked biobanks. 

 

Structural and multi-allelic variation (Steve McCarroll)  

Structural variation presents in a variety of ways and has variable effects on heritability across the 

genome. But at individual loci, SVs explain 2-4x more of the variation than “lead SNPs”. Large copy 

number variants are reasonably easy to detect and impute, while structurally unstable loci are subject to 

high evolutionary pressures, making them more challenging to analyze. Loci with recurring structural 

mutations can have many functionally distinct alleles. In schizophrenia, C4 (complement component 4) A 

and B genes in the major histocompatibility (MHC) locus have recurring structural mutations and include 

an ancient retroviral insertion that acts as a brain-specific enhancer. The more C4A RNA expression an 

allele generates, the greater the risk of schizophrenia. As a second example, recurring exon deletions in 

haptoglobin (HP) alter the multimerization of HP and act to reduce blood cholesterol, particularly in 

synergy with a nearby SNP that regulates HP.  
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Difficult to copy parts of the genome will always have a higher proportion of SVs, but they may appear 

as microsatellites over timescales so long that they do not impact human health. Across the genome SVs 

do not appear to explain much of the missing h2 because there appear to be at most 1 SV (with current 

knowledge) affecting any given disease. At individual loci, however, SVs may explain 2-4 times more 

variance than the “lead SNP.”  

 

An interesting new line of investigation is examining acquired somatic mutations as a source of missing 

h2 because mosaic mutations cluster in genomic hotspots and it may be the tendency to somatic 

mutation that is inherited, making “fragile sites” much more fragile. eQTLs can be used in genome-wide 

searches to impute polygenic risk scores and sub-classify mutation mechanisms. When somatic 

mutations are added to stem cells in culture, the cells have a selected advantage of up to 2-fold in 

pluripotent stem cells. The dichotomy between inheritance and acquired mutations may thus not be as 

firm as thought. Despite the availability of ever-more-complex and expensive technologies for 

characterizing the genome, these are often too easy an excuse to abandon painstaking and consistent 

application of established forms of genetic analysis. Most of what has been learned to date has come 

from large, widely available SNP datasets because SNP data are available for so many people.  
 

Omnigenic architecture of human complex traits (Jonathan Pritchard)  

Key questions are why lead GWAS hits for a given trait contribute so little to h2, and why so much of the 

genome appears to contribute to h2. For example, schizophrenia has 108 genome-wide significant loci 

but they only explain ~10% of variation. Significant loci for low-density lipoprotein cholesterol (LDL), 

only explain ~20% of its h2, but all known LDL loci cumulatively explain ~80%. Genes with trait-relevant 

functions typically contribute only small fractions of total disease risk, while low frequency/large effect 

variants often have clearer enrichment in trait- and disease-specific genes. Contributing variants are 

highly concentrated in regions of active chromatin in relevant tissues, suggest that most effects of low 

frequency/large effect variants are mediated through gene regulation.   

 

The omnigenic model describes three types of genes: 

• Tier 1: core genes that have direct roles in disease 

• Tier 2: peripheral genes, or all other expressed genes that can trans-regulate core genes 

• Tier 3: genes not expressed in cell types that do not contribute to heritability 

 

Most phenotypic variance is due to regulatory variation in peripheral genes. It is hypothesized that 

peripheral genes outnumber core genes by 100:1, so they dominate h2 by having effects in gene 

networks. About 70% of h2 is expressed in trans-peripheral genes, while ~30% of mRNA h2 is expressed 

in cis-core genes. Because trans eQTLs have small effect sizes compared to cis eQTLs, a typical gene 

must have many weak trans-regulators that contribute to its h2.  Cis effects are independent for each 

core gene, while trans effects are often shared across core genes. This means that most of the h2 is 

transferred to peripheral genes. If core genes are highly correlated in the same network, when one 

increases its expression so do the others so peripheral effects end up dominating. Trans effects shared 

across co-regulated networks can thus act as amplifiers for peripheral variation. GWAS are thus telling 
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us something fundamental about how genetic variation affects phenotypes, and the paradigm of direct 

links from variant to phenotype is actually quite restricted.  

 

Epigenetic effects and gene expression (Alexis Battle)  

Given that the majority of trait-associated variation occurs in non-coding regions, and presumably 

functions by altering gene expression, gene expression and epigenetic data can be used to inform 

missing h2. Cis eQTLs have been identified in nearly every human gene, and thus can be leveraged for h2 

studies, but trans eQTLs have thus far been poorly replicated and validated. They are believed to be 

underpowered for use in h2 studies even though they contribute more to gene expression h2. Most SNPs 

look like eQTLs in some tissue but most just tag functional variants, while ~50% of genetic variants 

implicated in human disease co-localize (appear to share the same causal variant) with an eQTL. Trans-

eQTLs appear to be more tissue-specific than cis-eQTLs. 

 

Disease-relevant states occur during different developmental stages, in response to variable 

environmental exposures, and in different cell types. eQTL data are needed from more diverse cell 

types, developmental stages, and environmental perturbations. Rare variants have been shown to drive 

extreme expression levels in individuals, but it remains uncertain what fraction of missing h2 they 

explain. Analyzing gene expression polygenicity is a reasonable next step to calculate missing h2, but will 

require large samples and meta-analyses of all available expression data, or other experimental 

approaches, particularly to find trans effects. Improving gene expression analysis will help determine 

how much more we need to invest in WGS and epigenetic data and will also power existing studies. 

 

Discussion  

Lack of power in studies does affect the trans-eQTL tissue-specificity. Power also affects our ability to 

discover cis and trans eQTLs. However, trans-eQTLs still display much greater tissue-specificity than cis-

eQTLs with matched MAF and effect sizes. Some may also affect tissues and developmental timepoints 

that have not yet been assayed. These eQTLs specific to conditions such as immune response and stem-

cell development are potentially missed due to not focusing on specific time intervals. We expected that 

when we found SNPs in pathways they’d ripple across cancer, but now 90% of SNPs or even loci in 

cancer haven’t been seen in another cancer. Could this relate to developmental order, considering 

cancer as a process of unraveling development, and they’re missed because we’re not looking at 

development? There is an emerging eQTL analysis effort in tumor tissues that will become more 

available soon for the community to utilize. 

  

The potential for confounding between cis- and trans-eQTLs due to the haplotype structure of the 

genome also needs consideration—could it be that cis-eQTLs are also trans-acting? There are no data to 

assess trans effects of cis-eQTLs. Most cis-eQTLs (only things cross-chromosomal are unambiguously 

trans) have allelic effects but the ability to call them is based on sequencing depth. If the omnigenic 

model were taken to the extreme, then every cis-eQTL would be trans to every other eQTL. In general, 

we do see more complex effects including feedback loops, target signaling, etc. After defining these 

effects, analyzing polygenicity of gene expression will be a good next direction. We should also start 

testing strawman models of regulation, particularly for traits with a relatively well-defined set of core 
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genes such as lipids. Core genes might be considered and evaluated as potential bottlenecks, one for 

which loss of function can’t be compensated; would this be consistent with polygenicity?   

 

How sex-specific, environment-specific and genetic background-specific effects generate missing 

heritability (Trudy Mackay) 

Effects of variants affecting human complex traits may be small due to genotype-by-sex interaction 

(genetic variation in sexual dimorphism), genotype-by-environment interaction (genetic variation in 

environmental plasticity) and genotype-by-genetic background interaction (epistasis). Drosophila as a 

model organism fulfills many criteria needed to study these genetic interactions. The D. melanogaster 

Genetic Reference Panel (DGRP) includes 205 sequenced lines derived from a single natural population 

for genome wide association mapping in a scenario where all variants are known. DGRP analyses show 

that the genetic architecture of the Drosophila lifespan is dominated by sex- and environment-specific 

variants as well as epistasis. These variants have small effects on lifespan, averaged over both sexes and 

all environments, and may account in part for missing h2 when context is not accounted for. With 

epistasis, effects of variants will not replicate between populations with different allele frequencies. 

Context-dependent variants may ‘hide’ from natural selection in natural populations experiencing 

heterogeneous environments, leading to maintenance of variation for lifespan in natural populations.  

 

Gene-environment interaction (David Hunter)  

Differences in rates of most diseases between countries (and over time within countries) are due to 

differences in environmental and “lifestyle” risk factors, not genetic differences. Differences in individual 

risk of most diseases within countries are due to differences in both genetic and environmental and 

“lifestyle” risk factors; therefore, there is need to measure both and see how they interact. With some 

exceptions (e.g., drug idiosyncrasies), genetic, environmental, and “lifestyle” risk factors are 

independent and the risks multiply. Despite interest in gene-environment interactions, there are few 

agreed-upon instances where the effect of exposure differs across genotypes (and vice versa). Reasons 

for these few true interactions could include poor measurement of genes, low power of studies, poor 

measurement of environment, and the possibility that there might not be many interactions to discover.  

  

Environment-to-environment interactions are also important. These include: smoking/alcohol in 

esophageal cancer, BMI/menopausal status in breast cancer, postmenopausal hormones/BMI in breast 

cancer, aflatoxin/HBV in liver cancer, radiation/smoking in lung cancer, skin type/UV and skin cancer. 

Interactions that depart from the multiplicative model are the exception, not the rule.  

  

In ten more years we have discovered few examples of synergy between genes and environment. Gene 

variants that dramatically alter drug metabolism can dramatically alter drug response and efficacy. Most 

genetic and environmental risk factors conform to the multiplicative model which makes risk prediction 

algorithms more stable. The multiplicative model implies that environmental risk reduction in those at 

high genetic risk prevents more cases and conforms to our new understanding of highly polygenic risk 

and complex environmental causation.  

 

Selection effects on complex trait architecture (Guy Sella) 
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Missing heritability largely reflects the limited statistical power of current GWAS to identify loci which 

together account for the bulk of genetic variance in complex traits. The power of GWAS can be well 

approximated in terms of two thresholds, where loci that exceed both thresholds are identified: i) a 

threshold contribution to genetic variance, which is a simple function of minor allele frequency and 

effect size, and ii) a threshold minor allele frequency (in studies based on genotyping and imputation).  

 

Because many quantitative complex traits are subject to stabilizing selection and because genetic 

variation affecting one trait often affects many others, the genetic architecture of a focal trait that arises 

under stabilizing selection can be modeled in a multidimensional trait space. When the degree of 

pleiotropy, or the effective number of associated traits, is sufficiently high, and when selection is 

sufficiently strong, the distribution of genetic variances among loci is insensitive to the specific degree of 

pleiotropy or strength of selection. The distribution depends on a single parameter: the expected 

contribution of a strongly selected locus to genetic variance. Weakly selected loci contribute much less 

to genetic variance than do strongly selected ones. As GWAS sample sizes increase and thus the 

threshold variance for discovery decreases, strongly selected large-effect loci will be identified first. Only 

when study sizes become very large will weakly selected loci begin to be picked up. It therefore seems 

likely that at the moment we are seeing only loci that are strongly selected. Indeed, our theoretical 

predictions for the distribution of variance among strongly selected loci fit GWAS data for height and 

body mass index. By extrapolating the fitted distributions to lower thresholds, we can predict the 

explained heritability and number of loci expected in larger studies.  

 

While our results are insensitive to many variations on modeling assumptions, they nonetheless are 

sensitive to historical changes in population size that substantially affect allele frequencies in the 

population under consideration. Another implication of recent demographic history is that relying on 

genotyping rather than resequencing in GWAS has little effect on explained h2, because strongly 

selected loci are expected to contribute much less to genetic variance than loci under intermediate 

selection. Some complex diseases may be primarily subject to polygenic mutation selection balance 

rather than to stabilizing selection.  

 

Understanding how evolution shapes genetic architecture helps explain missing h2. Such understanding 

should enable inferences about the mode of selection and about the parameters that shape variation in 

specific complex traits. In turn, these inferences should enable prediction of explained h2 under different 

study designs, such as genotyping and resequencing, and thus inform future mapping efforts. 

 

Discussion  

If allele frequency and effect size are considered separately, one wonders if there are populations where 

allele frequency has drifted upwards. Inbreeding will increase the frequency of rare genotypes; could 

that affect estimates of epistasis? This could be because large effects would give greater power to 

detect effect modifiers. Newly arising mutations may have large epistatic effects and would be selected 

against. It does seem curious that strong gxe and epistatic interactions are seen in the animal and plant 

literature but not in humans. Evidence is increasing of environmental interactions with polygenic risk 

scores, as in the interaction effects seen in UK Biobank at upper levels of BMI. 
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Family studies (Lynn Jorde)  

Families provide opportunities for long-term, longitudinal studies and return of clinically significant 

results. Multigenerational pedigrees allow detection of shared genomic segments containing rare 

disease-causing variants and detection of causal de novo mutations, such as SVs in autism and 

schizophrenia and SNVs in intellectual disability and congenital heart disease. They enable detection of 

parent-of-origin effects, germline/somatic mosaicism, and Mendelian subsets with complex disease 

phenotypes (BRCA1, BRCA2, APC, etc.). The Utah Population Database (UPDB), initiated in the 1970s, 

consists of 10 million people in large, multigenerational pedigrees that are linked to more than 25 

million medically relevant records. The database has now expanded to 100 million people and includes 

geocode information. Utah pedigrees offer excellent power for detecting and validating de novo 

mutations (DNM) by transmission and identifying unlikely DNMs (likely false positives) if they aren’t 

observed in any of the offspring of a putative DNM carrier. Multigenerational pedigrees allow estimation 

of the false negative rate of DNMs, which appears to be < 4% for 30x WGS data.  Validating DNM in the 

F1 generation by transmission produces an estimated average of 71 DNMs per individual, and about one 

in 5-7 have a de novo structural variant. The effect of paternal age on DNMs is greater than maternal 

age, with ~1.3 additional DNM per year of paternal age and 0.3 DNM per year of maternal age. Large F2 

generations in Utah pedigrees allow for longitudinal evaluation of DNM rate and assessment of the 

paternal age effect within individual pedigrees. 339 germline mosaic events (DNMs in multiple F2s) were 

identified across Utah families. Families were re-contacted in 1990s and 180 phenotype variables were 

collected. Fourth-generation data collection will be initiated with re-contact of families and follow-up. 

 

An additional study done in this large cohort included finding new shared genomic segments (SGS). SGS 

analysis was applied to multiple myeloma (MM) for which GWAS accounts only for about 20% of h2. 11 

high-risk MM pedigrees were identified from UPDB. One genome-wide significant SGS region (1.8 Mb) 

containing nine genes was found, of which one gene, USP45 (a DNA-repair gene), contained pathogenic 

variants. More regions that play prominent roles in cancer somatic mutations were identified by using 

multiple pedigrees. SGS analysis is being applied to other diseases such as young onset atrial fibrillation, 

preterm birth, and autism in the large Utah pedigrees.  

 

Better phenotyping and use of biomarkers (Dave Valle)  

For even the strongest variant, nearly all phenotypes exhibit variation in expressivity, while for nearly all 

phenotypes, heterogeneity of etiology is the rule. Informed, rigorous, iterative phenotyping yields the 

best data. The Centers for Mendelian Genomics (CMGs) aim to identify all genes with high penetrance 

variants to produce a map of phenotype relationships for all genes in the genome as “integrative, whole 

organism phenotypes.” The CMGs describe ~300 new phenotypes per year.  

  

An example of locus heterogeneity from the CMG findings is shown in Robinow syndrome and the Wnt-

PCP pathway. Robinow genes include DVL1 and DVL3 that have very similar alterations: 6 total 

pathogenic variants are tightly clustered within 100 nucleotides of each other. Contrary to DVL1, the 

variants in DVL3 are located in the final exon and include two splice acceptor mutations. But they are all 

still -1 frameshifting and escape from nonsense-mediated decay.  
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“Multi-Mendels,” the occurrence of dual molecular diagnoses resulting in a blended phenotype, was 

first reported in 2017. Multi-Mendels are an important cause of heterogeneity and have implications for 

clinical care, as these dual diagnoses may not be ascertained clinically, and without WES may never be 

properly diagnosed. Recognition of dual diagnosis is important as it informs recurrence risk counseling 

and may also inform management and surveillance recommendations.  

 

Epigenome patterns in Kabuki syndrome identified important pathogenic histone alterations. Disease is 

caused by alterations in patterns of DNA methylation secondary to defects in genes encoding histone 

modifying enzymes. This suggests “cross talk” between epigenome changes in histones and DNA 

methylation. Patterns similar in KS secondary to variants in KMT2D, KDM6A and KMT2A (Wiedermann-

Steiner) suggest that a similar phenotype derives from a similar epigenetic pattern. Results point to a set 

of downstream genes that may be important for pathogenesis.  

 

Two-locus models are another source of heterogeneity, as seen in craniosynostosis. WES was performed 

in a cohort of 191 cases yielding 13 (7%) rare damaging de novo or transmitted variants in SMAD6 that 

showed about 60% incomplete penetrance. Previous GWAS had identified one common variant (with 

allele frequency 0.35) 345 kb downstream of BMP2. SMAD6 encodes a BMP-induced osteoblast 

differentiation. The BMP2 downstream variant increases the risk of disease when the base is cytosine, 

and acted as a protective variant when the base is thymine.   

 

Discussion   

One can liken the omnigenic model to the Kerplunk game—marbles are core genes, which are 

supported by sticks (peripheral genes). Peripheral gene effects are only seen in select people; similar to 

how some Kerplunk marbles only fall when certain sticks are removed. Core genes are not necessarily 

hub genes (defined as such by systems biology framework). The omnigenic model can also be additive, 

and thus it is unnecessary to superimpose epistatic interactions to understand the model. 

 

eQTL studies can be used to find variant effects with bigger impacts than GWAS alone, due to 

differences in penetrance. A 1mm effect on height averaged across all participants may actually be a 

10cm effect in 1% of the participants. eQTL mapping analyses also allow variant effects to be interpreted 

in clusters. Pedigree studies may someday be able to estimate the penetrance of common and rare 

variants. When analyzing variant effect, impact, and penetrance, one must also consider selection. 

Selection can be intense and intensify over generations, which gives rise to polygenicity.  

 

Mind the (diversity) gap: contributions of diverse populations to common disease studies (Lucia 

Hindorff)  

Genetic studies over-represent European ancestry populations. The Population Architecture Using 

Genomics and Epidemiology (PAGE) program comprises has 50,000 individuals of non-European 

ancestry. PAGE developed a multi-ethnic genotyping array (MEGA) which is useful for fine-mapping and 

finding secondary alleles in diverse populations. PAGE recommends that population studies combine 

rather than stratify the data sets by ethnicity, as the former has more statistical power. PAGE has 
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developed the GENESIS and SUGEN analytic tools for computing on multiple ancestry populations. 

Missing heritability is due to a lack of scientific information, and lack of information differs among racial 

and ethnic minorities. To address the information disparity, studies need to include diverse populations 

and ensure analyses are state-of-the-art.  
 

Missing heritability: contributions from genomic studies in African ancestry populations (Charles 

Rotimi)  

Environmental and social data (e.g. educational attainment, health insurance, tax policies, water quality, 

housing opportunities) are frequently missing from genetic studies, but they impact health outcomes 

and health disparities. Hypertension is assumed to have the highest prevalence in African Americans, 

but prevalence in rural African populations is actually quite low, suggesting an important role of 

environmental and social factors. Gxe interactions are infrequent but can help to identify associated 

SNPs; ethnic-specific SNPs are more common and can only be found with samples of diverse ancestry.     

 

In a study of phenotypic variance stratified by local ancestry in admixed African Americans, most 

additive genetic variation was explained by genetic markers undifferentiated by ancestry. Results 

suggested the proportion of health disparities due to genetic risk factors, and adjusting for global 

ancestry did not control local ancestry effects.  

 

Contributions of diverse populations and expanded catalogues of human variation to our 

understanding of low frequency and rare variants (Eimear Kenny)  

Human genetic history is complex and has changed dramatically in recent evolutionary history. The 1000 

Genomes Project showed that common variants are shared globally while rare variants are geospatially 

restricted. Diverse reference populations facilitate adjudicating more variants clinically. Local ancestry 

and recent demography are important for rare variant mapping studies, and diverse reference and 

comparative sequences are required to improve rare/low frequency mapping. Knowing genetic ancestry 

can also reduce false positives and find founder populations thought to be missing. 

 

Discussion  

Genotypes can vary in prevalence in different populations due to the population’s propensity to 

exposure and subsequent selection. Gene-by-environment correlations should therefore be assessed 

and included in heritability studies. 

 

Common variant studies have more power when multiple ancestry populations are combined. Still, 

stratifying analyses by ancestry may be more fruitful for rare variants. Some rare variants are missing in 

entire populations, and thus a combined analysis will dilute those variants and under- or overestimate 

their prevalence. Using chromosomal segments to adjust for local ancestry would be ideal because 

chromosomal positions are important in admixed ancestry populations. However, the research 

community should be wary of pigeonholing genes as population-specific. Studies focusing on non-

European ancestry populations have found more variants and elucidated more genetic architectures 

than predominantly European studies. The diversity in regional African populations alone presents a 

good opportunity to understand genetic variation, gene flow, and environmental impact on h2.  
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Environmental effects on specific populations, and population prevalence data, have not been leveraged 

to their full potential. The tuberculosis bacterium has shaped the genome toward increased tendency to 

IBD; more explicit modeling of infectious agents might permit identification of more risk variants such as 

those in APOL1, We are not in a post-GWAS era, and disease and population architecture are far from 

completely understood. Failing to correct for environmental artifacts will skew a variant’s actual effect 

size and penetrance. It is estimated that 75-80% of effect sizes will be shared across all populations. 

 

Missing epistasis (Andy Clark)  

Fisher’s infinitesimal model supports the idea of a very large number of unlinked loci, each with very 

small effect. Results of the model show that the variance of offspring does not depend on trait values of 

the parents; selection produces negligible change in allele frequency (or variance); the model can 

accommodate epistasis; and consequences of stabilizing selection, inbreeding, and assortative mating 

are easily derived. The infinitesimal model of epistasis supposes each pairwise interaction is small and 

only very few are genome-wide significant. A substantial portion of variation caused by epistatic 

interaction ends up in the additive variance and thus contributes to h2. Epistasis matters in evolution as 

genes exist in networks and epistasis at the molecular level is pervasive. If selection is weak, drift 

dominates and variance components are unchanged. If selection is strong, allele frequencies change, 

and the genotype-phenotype map matters more than variance components. Reasons for difficulties in 

detecting epistasis include that markers are in imperfect LD with causal variants, rapid population 

growth leads to more rare alleles, multi-dimensionality and small effect size reduce power, and effects 

are embedded in higher dimension gxg and gxe interactions.  

 

Impact of indirect genetic effects on effect estimates, heritability estimates, and missing heritability 

(Augie Kong)  

Sib-regression for traits in Iceland suggest that twin estimates could overestimate h2 in the general 

population (at least in Iceland). For two probands, Relatedness Disequilibrium Regression (RDR) uses the 

identity-by-descent relatedness between the two pairs of parents as baseline/control for the IBD 

relatedness between the probands. If these RDR estimates are to be believed, this is evidence that 

Scandinavian twin estimates tend to be too high when applied to the general population of Iceland. 

Non-transmitted (NT) alleles only have nurturing effects and transmitted (T) alleles have both direct and 

nurturing effects. Thus, basic GWAS effect estimates would tend to be overestimates of the direct 

effects when there is genetic nurturing. Existence of genetic nurture can profoundly affect how various 

h2 estimates should be interpreted; GREML estimates, for example, would unavoidably also capture the 

genetic nurturing effects. Twin estimates and sib-regression are not affected by parental/ancestral 

genetic nurture, but can be biased due to genetic nurture from siblings.  

 

H2 estimates based on twins, for whatever reason, appear to be too high for the general population. Sib-

regression has its appeal but requires very large sample sizes. The RDR method might work well for 

probands with parents who are also genotyped. RDR and sib-regression can complement each other. 

Genetic nurture can lead to positive bias of both effect estimates and h2 estimates from GREML. If 

‘explained heritability’ only counts GWS markers and GREML h2 estimates are used, this could inflate 
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missing h2 for many health-related traits. The genetic components of educational attainment and BMI 

are estimated to have a correlation of -0.13 (Bulik-Sullivan et al., NG 2015). A part of that could be 

shared genetic nurturing components. 

 

Discussion  

Adoption studies would be a good model design to study h2 estimates, as genetic nurturing 

modifications would not be a factor because the parents would be unrelated to the child. In principle, 

the estimates are not biased but one has to reinterpret what they are estimating. Claiming something to 

be unbiased is meaningless unless you define what you are estimating. Lyndon Eves studied this in the 

1980s before the measured genotype era. There is a lot of literature between adoption and twin studies 

that might be relevant to understand this, but it has not been solved.  

  

The rapid expansion of the human population has led to an excess of rare alleles that contribute to 

epistatic interactions. This is also shown in studies of model organisms and it is attributed to population 

growth. However, comparing these rare variants to each other will not give epistatic variants. In 

addition, there is no distinction made in epistasis between quantitative and disease (binary) traits.  

  

On the underlying evolutionary forces, we know that genetic nurture affects fitness but have not 

defined how allelic effects evolve due to these forces. In the literature this is described in maternal 

effects. The challenge is to define the exceptions due to the lack of power in our studies. There is not 

enough power to estimate the phenomenon well with individual parents. On the example of educational 

attainment, even in countries such as Iceland where society favors a very equal environment across all 

study participants, we still see discrepancies. If the genetic nurture model is removed from educational 

attainment and applied to diet, for example, we could recognize an impact on disease because of 

inheriting risk alleles and behaviors from parents. There are data on genetic nurture that show effects 

on BMI, HDL, smoking, etc. and it is highly likely that genetic nurturing affects all health traits.  

 

Summary and recommendations (Teri Manolio and Peter Visscher) 

A number of lessons learned in the areas of quantifying missing h2; missing h2 in the clinic; contributions 

of rare variants, structural variants, and gene expression; environmental effects; diverse populations; 

and genetic architecture of complex traits were summarized and are listed in the Executive Summary.  

Future directions for new or enhanced analyses or studies are also detailed there. 

 

Enormous progress has been made in the past decade in contrast with decades before. H2 appears to 

have been over-estimated using traditional methods, leading to more apparent missing h2 than is 

probably the case. GWAS as an experimental design is no longer questioned and has been highly 

successful in explaining h2 and transitioning from classic Mendelian to omnigenic or infinitesimal 

models. Powerful data resources are fueling discovery, including GWAS summary statistics, the GWAS 

catalogue, GTEx, the Epigenetic Roadmap, ENCODE, and UK Biobank. Substantial proportions of h2 are 

now captured from known variants, and nearly all traits appear to be polygenic. It remains to be 

determined how polygenicity works biologically, and how natural selection shapes genetic architecture. 

 


