# Phenotype risk scores (PheRS) for risk prediction

Josh Denny, MD MS Vanderbilt University Medical Center 5/6/2019

Precision Medicine Initiative, PMI, All of Us, the All of Us logo, and The Future of Health Begins With You are service marks of the U.S. Department of Health and Human Services.

### Case: What is wrong with this patient?



Various methods of testing for gene/disease associations

#### Looping through association tests

- GWAS/NGS one phenotype, many genotypes
- PheWAS one genotype, many phenotypes

#### Aggregation approaches

- GRS/PRS/GPS one phenotypes, many genotypes aggregated
- Phenotype risk scores (PheRS) one genotype, many phenotypes aggregated

#### Automating assessments of "phenotype patterns" in the EHR



**Repeat this for any Mendelian diseases** 

Bastarache et al, Science 2018

#### CYSTIC FIBROSIS; CF

#### INHERITANCE

- Autosomal recessive

| GROWTH                               | HPO  |   | Phecodes |                                      |  |  |
|--------------------------------------|------|---|----------|--------------------------------------|--|--|
| Other                                |      |   |          |                                      |  |  |
| - Failure to thrive                  | 1508 | > | 264.2 H  | Failure to thrive1.62                |  |  |
| CARDIOVASCULAR                       |      |   |          |                                      |  |  |
| Heart                                |      |   |          |                                      |  |  |
| - Cor pulmonale                      | 1648 | > | 415.1 A  | Acute pulmonary heart disease1.49    |  |  |
| RESPIRATORY                          |      |   |          |                                      |  |  |
| Airways                              |      |   |          |                                      |  |  |
| - Chronic bronchopulmonary infection | 6538 | > | 483 A    | Acute bronchitis & bronchiolitis1.00 |  |  |
| - Bronchiectasis                     | 2110 |   | 496.3 I  | Bronchiectasis1.80                   |  |  |
| - Asthma                             | 2099 | > | 495 /    | Asthma0.98                           |  |  |
| - Pulmonary blebs                    | -    |   | -        |                                      |  |  |
| - Pseudomonas colonization           | -    |   | -        |                                      |  |  |
| ABDOMEN                              |      |   |          |                                      |  |  |
| Pancreas                             |      |   |          |                                      |  |  |
| - Pancreatic insufficiency in 80%    | 1738 | > | 577 I    | Diseases of pancreas1.42             |  |  |
| Biliary Tract                        |      |   |          |                                      |  |  |
| - Biliary cirrhosis                  | 2613 | > | 571.6 J  | Primary biliary cirrhosis2.06        |  |  |



# Many diseases have "phenotype patterns": consider Cystic Fibrosis





You can differentiate a group individuals diagnosed with a disease using **only the features** of the disease

#### Validating Phenotype Risk Scores on diagnosed individuals



Bastarache et al, Science 2018

#### **RESEARCH ARTICLE**

HUMAN GENOMICS

#### Phenotype risk scores identify patients with unrecognized Mendelian disease patterns

| Gene   | Vorient                   | relD        | HOM/  | Associated Mendelian Disease          |             | Phenotype            | Rota | Р                    | ClinVar | HCMD  | ACMG  |
|--------|---------------------------|-------------|-------|---------------------------------------|-------------|----------------------|------|----------------------|---------|-------|-------|
| Gene   | variant                   | rsiD        | HEI   | Associated Meridenan Disease          | inheritance | categories in Fliens | Dela | Г                    | Clinvar | HGIMD | ACING |
| CFTR   | c.1624G>1<br>p.Gly542Ter  | rs113993959 | 1/27  | Cystic fibrosis                       | AR          |                      | 1.39 | 2.9×10 <sup>-8</sup> | Р       | Y     | Р     |
| CHRNA4 | c.1448G>A<br>p.Arg483Gln  | rs55855125  | 1/21  | Nocturnal frontal lobe epilepsy, 1    | AD          |                      | 0.58 | 9.0×10 <sup>-8</sup> | U       |       | U     |
| DGKE   | c.966G>A<br>p.Trp322Ter   | rs138924661 | 1/14  | Nephrotic syndrome, type 7            | AR          |                      | 1.31 | 2.8×10 <sup>-7</sup> | LP      | Υ     | LP→P  |
| SUOX   | c.228G>T<br>p.Arg76Ser    | rs202085145 | 0/24  | Sulfocysteinuria                      | AR          |                      | 0.82 | 1.7×10 <sup>-6</sup> | U       |       | U→P   |
| CFTR   | c.1657C>T<br>p.Arg553Ter  | rs74597325  | 0/12  | Cystic fibrosis                       | AR          |                      | 1.81 | 2.1×10 <sup>-6</sup> | Р       | Y     | Р     |
| KIF1B  | c.2021C>T<br>p.Thr674lle  | rs41274468  | 0/21  | Charcot-Marie-Tooth disease, 2A1      | AD          |                      | 0.79 | 5.3×10 <sup>-6</sup> |         |       | U     |
| VWF    | c.5851A>G<br>p.Thr1951Ala | rs144072210 | 0/21  | Von Willebrand disease                | AR*         |                      | 0.53 | 8.6×10 <sup>-6</sup> |         | Y     | U     |
| KIF1A  | c.2676C>T<br>p.Ala993=    | rs116297894 | 1/25  | Spastic paraplegia-30                 | AR          |                      | 0.84 | 1.3×10 <sup>-5</sup> | LB      |       | LB→U  |
| F10    | c.872G>A<br>p.Arg291Gln   | rs149212700 | 0/15  | Factor X deficiency                   | AR*         |                      | 0.62 | 1.9×10 <sup>-5</sup> |         |       | U     |
| HFE    | c.502G>C<br>p.Glu168Gln   | rs146519482 | 0/40  | Hemochromatosis                       | AR          |                      | 1.08 | 4.0×10 <sup>-5</sup> | U       | Y     | U     |
| TG     | c.229G>A<br>p.Gly77Ser    | rs142698837 | 0/69  | Thyroid dyshormonogenesis             | AR          |                      | 0.26 | 6.0×10 <sup>-5</sup> |         | Y     | U→P   |
| SH2B3  | c.1183G>A<br>p.Glu395Lys  | rs148636776 | 0/22  | Familial erythrocytosis, 1            | AD          |                      | 1.48 | 6.1×10 <sup>-5</sup> |         |       | U→P   |
| SPTBN2 | c.7109G>A<br>p.Arg2370His | rs145522851 | 0/11  | Spinocerebellar ataxia                | AR*         |                      | 0.75 | 9.0×10 <sup>-5</sup> |         |       | U→LP  |
| FAN1   | c.1520G>A<br>p.Arg507His  | rs150393409 | 0/434 | Interstitial nephritis, karyomegalic  | AR          |                      | 0.15 | 9.9×10 <sup>-5</sup> |         |       | LB→U  |
| PANK2  | c.1561G>A<br>p.Gly521Arg  | rs137852959 | 0/26  | HARP syndrome                         | AR          |                      | 0.58 | 1.1×10 <sup>-4</sup> | Ρ       | Y     | Р     |
| SH2B3  | c.1183G>A<br>p.Glu395Lys  | rs148636776 | 0/22  | Essential thrombocythemia             | AD          |                      | 0.33 | 1.4×10 <sup>-4</sup> |         |       | U→P   |
| AGXT   | c.883G>A<br>p.Ala295Thr   | rs13408961  | 1/35  | Primary hyperoxaluria, type I         | AR          |                      | 0.82 | 1.7×10 <sup>-4</sup> | U/LB    |       | LB→U  |
| PLCG2  | c.751A>G<br>p.lle251Val   | rs190840748 | 0/10  | Familial cold autoinflammatory syn. 3 | AD          |                      | 0.70 | 1.9×10 <sup>-4</sup> |         |       | U     |

#### Tested

6644 variant/disease pairs

#### Found

18 significant associations (14 novel)

Neoplastic
Endocrine/Metabolic/Blood

Nervous/Psychiatric/Sensory Circulatory/Respiratory Digestive/Genitourinary
Musculoskeletal/Dermatologic

Other symptoms/Injuries

#### PheRS identifies novel pathogenic variants with clinical impact



Bastarache et al, Science 2018

#### PheWAS of a CF variant



Bastarache et al, Science 2018

#### A case of a rare disease



*Dr. Christopher J. Richards:* A 47-year-old woman was evaluated at the outpatient pulmonary clinic of this hospital because of recurrent sinusitis with progressive cough and bronchiectasis.

Since her mid-20s, the patient had had recurrent episodes of sinus congestion, with two or three sinus infections annually which had prompted treatment with

Mojica NEJM 2018, Bastarache NEJM 2019

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 Year diagnosed



#### **Premise**

- ACMG59 variants are becoming increasingly returned (eMERGE, All of Us)
- Most rare variants are VUS

#### <u>eMERGEseq</u>

- 25,000 patients sequenced for 109 genes (including 58 ACMG "returnable" genes)
- 10 clinical sites
- All linked to EHR data

## PheRS for high-throughput variant interpretation using EHRs: *FBN1* (Marfan Syndrome)

Known pathogenic variants



eme

netwo

Known benign variants

| p.L2815L | p.Q2296Q | p.D2285D | p.A2025S | p.N1282S | p.P1148A | p.D964D | p.C685C | p.A52A |
|----------|----------|----------|----------|----------|----------|---------|---------|--------|
| 0.2      | 0        | 0        | 0        | 0.4      | 0 1      | 0.4     | 0 1     | 0 1    |
| -0.2     |          | 0        | 0        | 0.4      | 0.1      | 0.4     | 0.1     | 0.1    |

#### What about FBN1 Variants of Uncertain Significance



| p.D2860G | p.K2851E | p.K2848T | p.V2771I | p.N2767S | p.R2730Q | p.G2727S | p.R2726Q | p.A2714V | p.G2691S |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 3.7      | 2.3      | 0.6      | -0.4     | -0.1     | 0.2      | -0.7     | -0.8     | 0        | -0.5     |
| p.P2676L | p.G2618R | p.I2616M | p.I2616V | p.T2520M | p.K2510R | p.Q2477R | p.Q2467R | p.K2460R | p.R2414Q |
| 0.3      | -0.2     | 1.9      | 0        | -0.1     | 1.1      | 0        | -1       | -0.6     | -0.8     |
| p.G2367R | p.S2361W | p.G2351S | p.C2339Y | p.R2311H | p.M2273I | p.E2193K | p.V2165L | p.N1975N | p.P1837S |
| 0.5      | 2.5      | 0.7      | 1.7      | 1        | -1.4     | -0.1     | -0.5     | -0.4     | 0.7      |
| p.R1832H | p.G1780G | p.V1667I | p.R1644Q | p.M1576T | p.I1498V | p.G1482S | p.P1453L | p.D1448N | p.G1441R |
| -0.8     | 0.4      | -0.2     | -0.5     | 0.4      | 0.2      | -0.5     | 0.1      | 0.5      | 0.2      |
| p.A1439G | p.S1438N | p.P1424A | p.L1405R | p.M1384V | p.I1359V | p.G1334D | p.Y1266F | p.N1168S | p.I1154I |
| -0.1     | -0.3     | -0.1     | 0.7      | 1.9      | 0.1      | -0.3     | 0.4      | 0        | 0.1      |
| p.G1143G | p.H1130R | p.G1126S | p.I1076L | p.R1066T | p.G1049S | p.P1009R | p.E1005K | p.V984V  | p.V984I  |
| 0.4      | 0.4      | -1.2     | -0.2     | -0.1     | -0.1     | -0.2     | 0.4      | -1       | 0.5      |
| p.M977R  | p.E965K  | p.E965Q  | p.L925V  | p.V916M  | p.E915K  | p.N867S  | p.1849M  | p.E812K  | p.P698L  |
| 0        | -0.4     | -0.8     | 1.7      | 0.3      | -0.2     | 0.2      | -0.1     | -0.6     | 0.8      |
| p.A686T  | p.P673S  | p.T524M  | p.V449I  | p.P430L  | p.G422E  | p.M393V  | p.R327T  | p.D288G  | p.N156S  |
| -0.2     | 0.2      | 0        | 0.2      | 0.5      | 0.3      | -0.3     | -0.1     | 0        | 0.1      |
| p.Q117R  | p.N28S   |          |          |          |          |          |          |          |          |
| 5.6      | 0.5      |          |          |          |          |          |          |          |          |

### Case: A diagnosis – riboflavin deficiency



### PheRS may help diagnose people earlier, but it will be hard

Polycythemia vera due to a JAK2 mutation



#### EHRs provides dense resource for efficient discovery: BioVU's example





#### The power of a data biosphere of common semantics and APIs



#### Sources for genetic data

#### Research cohorts

- Clinical testing will explode
  - Cancer testing
  - Increasing rare disease and expanding indications (UHC, BCBS Evidence Street)
  - Yet another reason to store genetic data not as PDFs...
  - Genomics as the tool to really move the Learning Healthcare System into standard practice?



Birney et al. biorXiv 2017. https://doi.org/10.1101/203554

## A small sampling of the VUMC Team



#### emerge network

#### +many others!





