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Hearing loss
Numbness

Auditory neuropathy 
syndrome

Muscle spasms/neuropathy
Wheelchair
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Case: What is wrong with this patient?

Blurry vision

Careful H&P exams
Detailed record review
Genome sequencing
Multidisciplinary team

Age (years)



Various methods of testing for gene/disease associations

Looping through association tests
• GWAS/NGS – one phenotype, many genotypes
• PheWAS – one genotype, many phenotypes

Aggregation approaches
• GRS/PRS/GPS – one phenotypes, many genotypes aggregated
• Phenotype risk scores (PheRS) – one genotype, many phenotypes aggregated
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Automating assessments of “phenotype patterns” in the EHR
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...
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Phenotype Risk Score

PheRS! ='
"#$

%
1
0 *"

Score for
subject i

Add up 
terms for k 
phenotypes

0=phenotype j 
absent

1=phenotype j 
present

weight for 
phenotype j 
derived from 
entire EHR

Map features to
EHR phenotypes

Repeat this for any Mendelian diseases
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Phecodes

Failure to thrive…………………..1.62

Acute pulmonary heart disease……1.49

Acute bronchitis & bronchiolitis......1.00
Bronchiectasis……………………..1.80
Asthma…………………………….0.98

Diseases of pancreas……………….1.42

Primary biliary cirrhosis…………....2.06



Many diseases have “phenotype patterns”: 
consider Cystic Fibrosis

Diagnosed 
cases

Controls

You can differentiate a group 
individuals diagnosed with a disease 
using only the features of the disease

Bronchiectasis 2.6
Pancreatitis 2.1
Asthma 1.4
Failure to thrive 2.1

Pancreatitis 2.1
Bronchitis 1.3

No matching 
symptoms

-

8.2

3.4

0



Validating Phenotype Risk Scores on diagnosed individuals

Bastarache et al, Science 2018



Tested
6644 variant/disease pairs

Found
18 significant associations
(14 novel)

Bastarache et al, Science 2018



PheRS identifies novel pathogenic variants with clinical impact

Bastarache et al, Science 2018

clinically diagnosed or have additional genetic
variants related to their symptoms (fig. S18).

Biologic validation of SH2B3, TG, and
SUOX associations

We selected three candidate previously unrecog-
nized associations for biologic validation: SH2B3,
SUOX, and TG. SH2B3 is a negative regulator of
cytokine signaling in hematopoietic cells that
operates through a direct interaction between
its SH2 domain and JAK2 to attenuate JAK2-
mediated activation of proliferative pathways
(27). The variant identified in this study, p.E395K,
is located in a region of the protein that is critical
for its inhibitory function (28) and is near known
disruptive variants (29).Humanembryonic kidney
(HEK) 293T cells stimulated with erythropoietin
showed an increase in phosphorylated extra-
cellular signal–regulated kinase (pERK) levels that
was quenched in the presence ofwild-type SH2B3
but not quenched with both the known p.R392E
functionalmutation and our p.E395K variant (Fig.
4, A and B).
Splicing prediction programs suggested a prob-

able reduction in 5′ donor strength for SUOX
p.R76S andpossible generation of an exonic cryptic
splice acceptor site by TG p.G77S. SUOX p.R76S is
located at the conserved –1 position of the 5′
donor of exon 5.We demonstrated that the SUOX
variant caused a decrease in exon inclusion from
96 to 35% (unpaired two-tailed t test; P < 0.001;
Fig. 4C). No transcripts aside from the exon-
included and exon-skipped transcripts were de-
tected. Similarly, TG p.G77S resulted in altered
splicing. The basal rate of exon inclusion was re-

duced from 65% for the wild-type TG exon to
only 26% inclusion in the p.G77S exon (unpaired
two-tailed t test; P < 0.001). These ratios were
consistent across a range of cDNA concentra-
tions and polymerase chain reaction (PCR) cycle
numbers (Fig. 4, C and D).

Comparison of PheRS with existing
methods to determine
variant pathogenicity

Across all PheRS variant associations with nom-
inal P < 0.05 (n = 454), functional annotations
were significantly correlated with PheRS effect
size (Wilcoxon rank sum test); splice donor/
acceptor and stop-gain variants tended to have
the largest effect size, followed in decreasing or-
der by missense, splice region, synonymous, and
intron/untranslated region variants (fig. S19A).
Thirteen of 14 functional prediction methods
trended or associated with the probability of
finding associations with the PheRS; predictions
from CADD (combined annotation-dependent
depletion) (9), SiPhy (30), and Polyphen2 HVAR
(10) were statistically significant (P < 0.05;
Fisher’s exact test; fig. S19B).

Discussion

In our validation study, PheRS was very effective
in identifying patients with diagnosed Mendelian
disease by using only the phenotypic signatures.
Applying PheRS to a genotyped population, we
found an increased burden of phenotypes among
individuals with rare variants in Mendelian dis-
ease genes. Sequencing identified or confirmed
second rare variants in four individuals, three of

whom had the highest PheRS among all hetero-
zygotes or homozygotes for that variant. In vitro
studies provided supporting evidence of patho-
genicity for all three variants tested.
Although our approach relies on many dec-

ades of accumulated knowledge about the pheno-
typic imprint of Mendelian disease, the method
itself is simple to implement. Our ability to rep-
licate results in an external cohort suggests that
it is portable and would therefore be applicable
to data sets such as those of the Million Veteran
Program, UK Biobank, and the All of Us Re-
search Program (All of Us is a service mark of the
U.S. Department of Health and Human Services).
Applied to such large populations, this method
could facilitate the discovery of pathogenic var-
iants, refine estimates of penetrance across
diverse populations, and provide amore nuanced
understanding of inheritance patterns, which
this study suggests may be more complex than
merely “recessive” or “dominant” for some genes.
Incorporation of richer EHR data, such as lab-
oratory results and clinical notes (31), could in-
crease the resolving power of PheRS. Furthermore,
this method may be used with other combina-
tions of phenotypes that do not follow estab-
lished Mendelian patterns, perhaps based on
undiagnosed patientswith unusual presentations.
The American College ofMedical Genetics and

Genomics established guidelines for variant inter-
pretation that reflect the need to combinemultiple
lines of evidence, including population-based
genotype-phenotype correlations (32). Ourmethod
provides a high-throughput means to generate
such evidence. Using these guidelines, 10 of the
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Fig. 3.Whole-exome sequencing reveals second variants among indi-
viduals with high PheRSs and demonstrates disease risk in heterozy-
gotes. Each point represents an individual who is heterozygous or
homozygous for the variant labeled on the left.The x axis represents the
z-score for the PheRS relative to what is expected given age and sex (using
the residual from the PheRS). All individuals carry at least one copy of the
variant indicated on the left; additional variants identified by whole-exome
sequencing or clinical chart review are labeled for each individual;

homozygotes confirmed by sequencing are labeled “HOM.”Additional
CFTR variants were ascertained from clinical testing in the EHR; all other
individuals were sequenced for this study. Clinically diagnosed individuals
are represented as squares; all others are shown as circles.Where additional
variants were found, the association test from the discovery analysis was
repeated after dropping individuals with a second variant (P values
generated using linear regression assuming a dominant model, adjusted for
age and sex), and the P value is recorded under the gene/variant label.
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clinical dx with CF

z-score of PheRS

7/51 had kidney transplants
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PheRS for CF

PheWAS of a CF variant



A case of a rare disease

Correlation Coefficient=0.37
P=1x10-6

Average age of new CF diagnoses over time at VUMC
(n=368)

Her PheRS for Cystic 
Fibrosis – top 2%-ile

Mojica NEJM 2018, Bastarache NEJM 2019



Interpreting variants

Premise
• ACMG59 variants are becoming increasingly returned (eMERGE, 

All of Us)
• Most rare variants are VUS

eMERGEseq
• 25,000 patients sequenced for 109 genes (including 58 ACMG 

“returnable” genes)
• 10 clinical sites
• All linked to EHR data



Known pathogenic variants

Known benign variants

PheRS for high-throughput variant interpretation 
using EHRs: FBN1 (Marfan Syndrome)



What about FBN1 Variants of Uncertain Significance
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Hearing loss,
Numbness

Auditory neuropathy 
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Muscle spasms/neuropathy
Wheelchair

Dysphagia
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Case: A diagnosis – riboflavin deficiency

Blurry vision

Begin megadose riboflavin

Riboflavin challenge
test abnormal

Regains sensation
Walks without walker

PheRS=14.1
Age (years)



PheRS may help diagnose people earlier, but it 
will be hard

Polycythemia vera due to a JAK2 mutation
JAK2 carrier diagnosed 1 yr after crossing into the >99.5% 

percentile for JAK2-related PRS. 40
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EHRs provides dense resource for efficient discovery: 
BioVU’s example
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>500,000

240,000

>500,000

>500,000

>700,000
(1,000,000+)

52,000200,000

140k
Target: 1,000,000

The paradox of personalized 
medicine: we will need huge 

populations to best understand the care 
for the individual



The power of a data biosphere of common semantics and APIs

IHCC



Sources for genetic data

⦿ Research cohorts

⦿ Clinical testing will explode
• Cancer testing
• Increasing rare disease and 

expanding indications (UHC, 
BCBS Evidence Street)

• Yet another reason to store 
genetic data not as PDFs…

• Genomics as the tool to really 
move the Learning Healthcare 
System into standard practice?

Birney et al. biorXiv 2017. https://doi.org/10.1101/203554

https://doi.org/10.1101/203554


A small sampling of 
the VUMC Team +many others!


