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Predicting adverse health outcomes
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Given a patient’s clinical history up to a given point in time
Predict whether the patient will have a specific type of adverse event in the future



Learning task
Can we find a model that accurately represents outcome ! as a function of feature vector "?
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Example: predicting post-hospitalization VTE risk

time

period of 
hospitalization

90-day prediction window

?

genotype
demographics

events in EHR (diagnoses, 
procedures, medications, 
labs, etc.)

Given a patient’s clinical history up to EHR up to time of hospitalization
Predict whether the patient is high risk for VTE after release from hospital



Predicting post-hospitalization VTE risk

• 720 subjects

• cases/controls determined by expert review

• two feature sets

• 119 features based on 78 risk factors for VTE or thrombophilia

• 3330 features in “unabridged” representation

Alex CobianEmily Kawaler Peggy Peissig Steven Yale



Assessing the accuracy of learned VTE models 
[Kawaler et al. AMIA 2012]
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1. We can learn models that are more accurate than 
conventional risk assessment tools.

2. Learned models can identify novel risk/protective factors.



We compare three types of models for VTE task
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Survival curves for models that stratify patients 
for post-hospitalization VTE risk

conventional risk 
assessment tools

learned model (known risk factors)

learned model (all features)



Predicting asthma exacerbations
• 28,101 subjects with prior history of asthma
• exacerbations phenotyped by a rule: an urgent visit to a healthcare provider for asthma 

symptoms followed by treatment with oral corticosteroids
• features represent

• demographics
• diagnoses, problem-list diagnoses
• medications
• vitals
• asthma control scores
• prior exacerbations

Akshay Sood Lawrence HanrahanTheresa GuilbertAlex Cobian



Assessing the accuracy of learned exacerbation 
prediction models



3. In some applications, we can learn more accurate models by 
using patient genetics in addition to clinical variables.



Predicting breast cancer risk

• 738 subjects for which both genetics and mammogram data was available

• cases/controls determined by cancer registry

• excluded cases with known BRCA1 or BRCA2 mutations

• features
• 49 variables from BI-RADS lexicon
• 77 high-frequency/low-penetrance SNPs identified in GWAS

Beth Burnside Ming Yuan Shara FeldJun Fan



Improved breast-cancer risk prediction with structure-
leveraged methods [Fan et al. JMLR 2016]

logistic regression group lasso
(grouping structure) 

fused lasso
(dependence structure)
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Assessing the accuracy of  learned breast-cancer 
risk prediction models

LR Structure-leveraged
model

p-value

49 Mammography features 0.700 0.717 <0.001

77 SNPs 0.590 0.679 <0.001

49 Mammography features and 77 SNPs 0.697 0.765 <0.001

area under ROC curve



Assessing the accuracy of  learned breast-cancer risk 
prediction models [Feld et al. AMIA Informatics Summit 2018]

the predictive value of genetics depends on 
the age of subjects
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4. Simple, linear models are often competitive with fancier models.



Assessing the accuracy of learned exacerbation 
prediction models





“baseline” models are 
regularized logistic regression; 
nearly as good as deep 
networks for all tasks 



5. We can we gain some understanding from complicated learned 
models (e.g. random forests, neural networks).



Interpreting black-box models
[Craven & Shavlik, NeurIPS 1996; Lee et al., AAAI 2019]

Akshay SoodKyubin Lee



Identifying important features via perturbations
• Feature importance can be ascertained by perturbing a feature and 

measuring its effect on the model loss

model interpretability by identifying important features through perturbations of input [7, 16]. The
specific contributions of our approach are the following. First, it is well suited to tasks with large,
structured feature spaces. In such applications, the base features that are used as input to the model
might not provide the best level of resolution for characterizing what is important to the learned
model. Our approach tests feature groups, in addition to base features, and tries to determine the level
of resolution at which we can determine the important features. Second, we go beyond just ranking
features according to their importance, and instead use hypothesis testing to assess the effect of each
feature on the model’s loss. Moreover, we use a hierarchical approach to control the false discovery
rate when testing feature groups and base features for importance. Third, we propose a method based
on hypothesis testing to identify important interactions among base features and feature groups.

We evaluate our approach by analyzing random forest and LSTM neural network models learned
in two application domains: identifying viral genotype-to-disease-phenotype associations, and
predicting asthma exacerbations from electronic health records (EHRs).

2 Methods

In this section, we describe the key elements of the model-agnostic approach we have developed for
characterized learned models.

2.1 Identifying Important Features via Perturbation

As shown in Algorithm 1, one general approach to identifying important features in a learned model
is to measure how the output of the model, or its loss, varies when individual features in a given set
of instances are perturbed in some way. Breiman [7] proposed an approach based on this idea as a
way to characterize learned random forest models. In Breiman’s method, the perturbation is done
by permuting the values of the given feature across a set of instances. However, the approach can
be generalized to other perturbations, including feature “erasure” [16], flipping binary features, or
replacing features with “background” values.

Algorithm 1: General approach to identifying important features via perturbation

input : learned model h, feature set F , test set T = {
�
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output : set {(j, vj) |j 2 F} summarizing of the effect vj of perturbing each feature j on
loss L
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calculate summary statistic vj characterizing the effect of perturbing feature j on L

A key extension of this idea in our approach is that it uses hypothesis testing to determine whether a
given feature has a generally consistent effect on the model’s loss across the distribution of instances.
We do this using held-aside test instances so that our importance assessment measures whether
a feature truly impacts a model’s predictive accuracy. In the results presented here, we use the
Wilcoxon matched-pairs signed-rank test to assess the null hypothesis that the median difference
between pairs L

h
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is zero. We use this in place of a paired t-test

due to significant non-normality in the changes to loss introduced by our feature perturbations. We
use the one-tailed version of the test, corresponding to the median difference being greater than zero,
in order to focus on features that provide predictive value to the model rather than overfitting.
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From features to hierarchies over features

• In many domains, there is hierarchical structure over features

• We can extend the idea of perturbing base features to 
perturbing feature groups

model
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False Discovery Rate Control

• There is a multiple comparisons problem due to the large number of base 
features and feature groups under test

• We use hierarchical FDR control [Yekutieli JASA 2008] to identify the finest level 
of resolution at which we can find features that have a statistically significant 
effect on model loss



1. use standard feature hierarchies (e.g. ICD-9)
2. do perturbations by erasure
3. calculate p-values for all nodes in the hierarchy
4. apply hierarchical FDR control

Analysis of learned asthma exacerbation model
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Identifying important features for asthma exacerbation 
prediction model
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Conclusions
• learned models are sometimes more accurate than conventional risk assessment tools
• learned models can identify novel risk/protective factors
• genetics can augment predictive value of clinical data in some cases
• simple models often work well
• but we have tools to gain insight from complex black-box models

NIH U54 AI117924
NIH T32 HG002760
NIH T15 LM007359
NIH R01 EY023292
NSF IIS 1218880
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• 69 viral genomes
• features represent 547 haplotype blocks 
• we have learned regression models using 

Lasso, ridge, and random forest approaches

Learning associations between HSV-1 genotype and 
host phenotype [Lee et al. J. Virology 2016; Kolb et al. PLoS Pathogens 2016]
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• 547 features
• with FDR = 0.05, we identify 107 important 

features/feature groups
• 40 “outer” features/feature groups
• 34 base features

important feature group
important feature

pruned subtree

Analysis of learned HSV-1 genotype-to-phenotype models

large parts of feature
space are pruned from
hypothesis testing

some ”base” features 
are important

other important features
can only be determined at 
group resolution



Important variables are localized in the viral genome

20,000 40,000 60,000 80,000 100,000 120,000 140,000 



Using machine-learning to predict adverse outcomes

1. select cohort of subjects

2. retrospectively phenotype outcomes (e.g. determine who is a case/control)

3. define feature representation

4. learn models

5. evaluate models



Defining feature representations

diagnoses medsprocedures labsdemographics vitals genotypes
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An LSTM neural network for asthma exacerbations
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An LSTM neural network model
LSTM



Identifying important features via perturbation

• We can use hypothesis testing to characterize the effect of perturbing a feature

Null hypothesis: Median change in loss when perturbing feature    is 0
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Table 1: Summary of feature-importance hypothesis testing in both application domains.
HSV-1 genotype-phenotype association asthma exacerbation

Blepharitis Stromal Keratitis Neovascularization ICD-9
total nodes (base features + feature groups) 1,093 1,093 1,093 8,740
nodes with unadjusted p < 0.05 242 148 111 3,480
nodes rejected at q level < 0.05 107 110 80 3,179
outer nodes 40 36 24 2,120
feature groups among outer nodes 6 3 3 159

matrix, and a complete linkage function, such that every pair of features in a given cluster is within a
specified bit difference. Since we want our clustering to group neighboring haplotype blocks that are
correlated (i.e. exhibit similar inheritance patterns), we constrain the clustering method such that
hierarchy adheres to the linear ordering of the haplotype blocks with the HSV-1 genome. Thus, the
merging step during clustering can be applied only to features or feature groups that are adjacent to
each other in the genome. The resulting hierarchy consists of 547 leaf nodes (base features) and 546
internal nodes (feature groups).

The perturbations we use to interrogate models in this domain are based on permutations. For a
given feature or feature group, we randomly shuffle and reassign the values for the feature (feature
group) in the data matrix. When doing such permutations for feature groups, the vector of values in
the group for each instance are treated as a unit, being shuffled and reassigned together. We do this
perturbation 500 times for each feature or feature group when assessing its importance.

We consider two hierarchies over features for the asthma exacerbation prediction task. We construct
a top-level hierarchy representing our broad categories of EHR-elicited features (diagnoses, demo-
graphics, etc.). The second hierarchy we use is the standard ICD-9 hierarchy of diagnoses. In this
application, we use erasure perturbations which involve zeroing out features or feature groups of
interest, following the use of erasure in [16] for RNNs. For event-based features, the erasure operation
we use removes all occurrences of the feature from a patient’s history. For features that are encoded
in an embedded representation, the erasure operation is applied to the patient’s history and then the
embedding of the associated events is recomputed while keeping the embedding models the same.

3.3 Identifying Important Features

In this section, we determine which features and feature groups we can identify as being important
to our learned models in both application domains when controlling the false discovery rate at 0.05.
Table 1 summarizes the results of our feature importance analysis of models learned for four tasks in
both domains. The first row in the table indicates the number of base features and feature groups
that were assessed for each model. The second row indicates the number of base features and feature
groups that have an unadjusted p-value < 0.05 when doing significance testing as described in
Section 2. The third row shows the number of features that we ascertain are important after doing
hierarchical FDR control. The last two rows indicate, among those nodes surviving the FDR control,
the number that are outer nodes, and the number of outer nodes that correspond to feature groups.
Recall that outer nodes refer to those that survive the FDR control but have no children that do.

Figure 1 provides a visual depiction of these results for the blepharitis phenotype model. (Similar
figures for the other phenotypes are provided in the supplement). Among the 1,093 base features and
feature groups that were tested, we determine that 107 are important when controlling the FDR at
0.05. Moreover the set of 40 outer nodes represent the finest level of resolution at which we can say
that a viral genomic region is important to the phenotype. In the case of the blepharitis phenotype,
six of the outer nodes are feature groups which represent genomic regions that seem to be associated
with the phenotype but for which we cannot localize precisely which base features are important.
Figure 2 shows the identified important features for all three disease phenotypes mapped to the
genomic coordinates of the virus. Through the application of our approach to the learned RF models,
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