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Predicting adverse health outcomes

events in EHR (diagnoses, — sec——
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prediction window

Given a patient’s clinical history up to a given point in time
Predict whether the patient will have a specific type of adverse event in the future



Learning task

Can we find a model that accurately represents outcome y as a function of feature vector x?

learning algorithm




Example: predicting post-hospitalization VTE risk
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90-day prediction window

Given a patient’s clinical history up to EHR up to time of hospitalization
Predict whether the patient is high risk for VTE after release from hospital



Predicting post-hospitalization VTE risk

e 720 subjects
» cases/controls determined by expert review
* two feature sets
119 features based on 78 risk factors for VTE or thrombophilia

e 3330 features in “unabridged” representation

Emily Kawaler Alex Cobian Peggy Peissig Steven Yale



Assessing the accuracy of learned VTE models
[Kawaler et al. AMIA 2012]
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1. We can learn models that are more accurate than
conventional risk assessment tools.

2. Learned models can identify novel risk/protective factors.



We compare three types of models for VTE task

curated representation unabridged representation conventional risk
known risk factors) all features assessment tools

Illinois State Medical Society

Are You at Risk for DVT? |

FOR PATIENTS Complete this risk assessment tool to find out. sove Sar it
Q Male
Name Q Femae  Today's Date

Only your doctor can determine if you are at risk for Deep Vein Thrombosis (DVT), a blood clot that forms in one of the deep veins of

your legs. A review of your personal history and current health may determine f you are at risk for developing this condition. Take a
W) moment o complete this form foryoursel or compet i for aloved one). Then be sure o talk with your doctor about your ik or

i 1 DVT and what you can do to help protect against t. Your doctor may want to keep a copy in your fle for future reference.

Directions: /Add 2 points for each of the following statements
1. Check all statements that apply to you. that apply:
2. Enter the number of points for each of your checked Q Age 61-74 years
statements in the space at right.
Q Current or past malignancies (excluding skin cancer, but

3. Add up all points to reach your total DVT Risk Score. not melanoma)
Then, share your completed form with your doctor.

[

Planned major surgery lasting longer than 45 minutes
(including laparoscopic and arthroscopic)

Add 1 point for each of the following statements that ovable plaster cast or mold that has kept you
apply now or within the past month: from moving your leg within the last month

D Age 4180 yoar Q Tube in blood vesselin neck or chest that delivers biood
s years — o medicine directly to heart within the last month

O Minor surgery (ess than 45 minutes) is planned — (also called central venous ac iine, or port) —
Q Past major surgery (more than 45 minutes) within QO Gonfined to a bed for 72 hours or more .

the last month
Q Vise varicose veins — Add 3 points for each of the following statements
QA history of Infammatory Bowel Disease (1BD) that apply:

s (for example, Crohn's disease or ulcerative colis) -
—— Q Age 75 or over
[ O Swolken logs (current)
Q0 History of blood clots, either Deep Vein Thrombosis (V)

O Overweight or obese (Body Mass Index above 25) or Puimonary Embolism (PE)
O Heart attack Q Family history of blood clots (thrombosis) —
Q Congestive heart fakre Q Personal or family history of postive blood test indicating
Q Serious infection (for example, pneumonia) an increased risk of blood clotting p—
Q Lung disease (for example, emphysema or COPD) 'Add 5 points for of the following
0 On be et oreaicted mabty, 7:‘:\:“«\”‘; a that apply now or within the past month:

removabie leg brace for less than 72 hours
Q Otherrisk factors (1 point sach)™™ Q Elective hip or knee joint replacement surgery

thooraturo Q Broken hip, pelis or leg
o, Q Serious trauma (for example, multiple broken bones due
o a fall or car accident)

For women only: Add 1 point for each of the following Q Spinal cord injury resulting in paralysis
statements that apply: Q Experienced a stroke
Q Current use of birth control or

Hormone Replacement Therapy (HRT) B . Add up all your points to get your
QO Pregnant or had a baby within the last month — total Caprini DVT Risk Score
Q History of unexplained stilloorn infant, recurrent What does your Caprini

spontaneous abortion (more than 3), premature birth DVT Risk Score mean? * Studies have shown if you

with toxemia or growth restricted infant « Risk scores may indicate your have 0-2 risk factors, your

DVT risk is small. This risk
increases with the presence
of more risk factors.

odds of developing a DVT during

For more information call ISMS at 1-800-782-4767, ext. 1678  major surgery or while being
www.isms.org hospitalized for a serious illness.

‘Adapted with permission. Our thanks to ISMS member, J. A. Caprini, MD, with your doctor who can

associated with NorthShore University HealthSystem more than five hours may also G your doctor o can.

February 2013 be at risk for DVT. ine you isk by
e evaluating all of these factors.

+ Airplane passengers who fly « Please share this information




Survival curves for models that stratify patients
for post-hospitalization VTE risk

Proportion of people who have not yet developed a VTE
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Predicting asthma exacerbations

e 28,101 subjects with prior history of asthma

* exacerbations phenotyped by a rule: an urgent visit to a healthcare provider for asthma
symptoms followed by treatment with oral corticosteroids

» features represent
 demographics
e diagnoses, problem-list diagnoses
 medications
e vitals
e asthma control scores
e prior exacerbations

Alex Cobian Theresa Guilbert Lawrence Hanrahan



Assessing the accuracy of learned exacerbation
prediction models
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3. In some applications, we can learn more accurate models by
using patient genetics in addition to clinical variables.



Predicting breast cancer risk

738 subjects for which both genetics and mammogram data was available

cases/controls determined by cancer registry

excluded cases with known BRCA1 or BRCA2 mutations

features

e 49 variables from BI-RADS lexicon
» 77 high-frequency/low-penetrance SNPs identified in GWAS
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Improved breast-cancer risk prediction with structure-
leveraged methods [Fan et al. JMLR 2016]

49 mammography descriptors
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logistic regression group lasso fused lasso
(grouping structure) (dependence structure)



Assessing the accuracy of learned breast-cancer
risk prediction models

area under ROC curve

\
( \

LR Structure-leveraged p-value

model
49 Mammography features 0.700 0.717 <0.001
77 SNPs 0.590 0.679 <0.001

49 Mammography features and 77 SNPs 0.697 0.765 <0.001



Assessing the accuracy of learned breast-cancer risk
prediction models [Feld et al. AMIA Informatics Summit 2018]

the predictive value of genetics depends on
the age of subjects

area under ROC curve
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4. Simple, linear models are often competitive with fancier models.



Assessing the accuracy of learned exacerbation
prediction models
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Random forest, temporal window representation (area = 0.7556)
Random forest, last occurrence representation (area = 0.7582)
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ARTICLE
Scalable and accurate deep learning with electronic health

records

Alvin Rajkomar "2, Eyal Oren’, Kai Chen', Andrew M. Dai’, Nissan Hajaj', Michaela Hardt', Peter J. Liu', Xiaobing Liu', Jake Marcus’,
Mimi Sun’, Patrik Sundberg1, Hector Yee', Kun Zhang1, Yi Zhang1, Gerardo Flores', Gavin E. Duggan', Jamie Irvine', Quoc Le’,

Kurt Litsch, Alexander Mossin’, Justin Tansuwan', De Wang', James Wexler', Jimbo Wilson', Dana Ludwig?, Samuel L. Volchenboum?,
Katherine Chou', Michael Pearson', Srinivasan Madabushi', Nigam H. Shah*, Atul J. Butte?, Michael D. Howell', Claire Cui’,

Greg S. Corrado' and Jeffrey Dean’

Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare
quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR
data, a labor-intensive process that discards the vast majority of information in each patient’s record. We propose a representation
of patients’ entire raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that
deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple
centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two US academic
medical centers with 216,221 adult patients hospitalized for at least 24 h. In the sequential format we propose, this volume of EHR
data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for
tasks such as predicting: in-hospital mortality (area under the receiver operator curve [AUROC] across sites 0.93-0.94), 30-day
unplanned readmission (AUROC 0.75-0.76), prolonged length of stay (AUROC 0.85-0.86), and all of a patient’s final discharge
diagnoses (frequency-weighted AUROC 0.90). These models outperformed traditional, clinically-used predictive models in all cases.
We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios. In a case
study of a particular prediction, we demonstrate that neural networks can be used to identify relevant information from the
patient’s chart.

npj Digital Medicine (2018)1:18; doi:10.1038/s41746-018-0029-1



ARTICLE

Scalable and accurate deep learning with electronic health

records

Supplemental Table 1: Prediction accuracy of each task of deep learning model compared to baselines

“baseline” models are
regularized logistic regression;
nearly as good as deep
networks for all tasks

Hospital A Hospital B

Inpatient Mortality, AUROC'(95% CI)

Deep learning 24 hours after admission 0.95(0.94-0.96) 0.93(0.92-0.94)
Full feature enhanced baseline at 24 hours after admission 0.93(0.92-0.95) 0.91(0.89-0.92)
Full feature simple baseline at 24 hours after admission 0.93(0.91-0.94) 0.90(0.88-0.92)
Baseline (aEWS?) at 24 hours after admission 0.85(0.81-0.89)  0.86(0.83-0.88)
30-day Readmission, AUROC (95% CI)

Deep learning at discharge 0.77(0.75-0.78)  0.76(0.75-0.77)
Full feature enhanced baseline at discharge 0.75(0.73-0.76)  0.75(0.74-0.76)
Full feature simple baseline at discharge 0.74(0.73-0.76)  0.73(0.72-0.74)
Baseline (mHOSPITALS3) at discharge 0.70(0.68-0.72)  0.68(0.67-0.69)
Length of Stay at least 7 days AUROC (95% CI)

Deep learning 24 hours after admission 0.86(0.86-0.87) 0.85(0.85-0.86)
Full feature enhanced baseline at 24 hours after admission  0.85(0.84-0.85) 0.83(0.83-0.84)
Full feature simple baseline at 24 hours after admission 0.83(0.82-0.84) 0.81(0.80-0.82)
Baseline (mLiu?) at 24 hours after admission 0.76 (0.75-0.77)  0.74(0.73-0.75)




5. We can we gain some understanding from complicated learned
models (e.g. random forests, neural networks).



Interpreting black-box models
[Craven & Shavlik, NeurlPS 1996; Lee et al., AAA/ 2019]
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ldentifying important features via perturbations

* Feature importance can be ascertained by perturbing a feature and
measuring its effect on the model loss
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let AXE-Z) represent x'") with feature j perturbed in some way
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From features to hierarchies over features

* In many domains, there is hierarchical structure over features
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False Discovery Rate Control

* There is a multiple comparisons problem due to the large number of base
features and feature groups under test

* We use hierarchical FDR control [Yekutieli JASA 2008] to identify the finest level
of resolution at which we can find features that have a statistically significant
effect on model loss



Analysis of learned asthma exacerbation model

1. use standard feature hierarchies (e.g. ICD-9) ( )
Xns1 o Xp) = Lo [PV
2. do perturbations by erasure
3. calculate p-values for all nodes in the hierarchy o s ] o
4,

apply hierarchical FDR control

diagnoses i i diagnoses
embedding embedding

1 f

(1,1 X1 Xkt1,1 - X011 X141,1 - Xn,1) (1,6 o Xieitr Xpet 1,6 - X1t X1t 1,6 - Xy t)




ldentifying important features for asthma exacerbation
prediction model

DIAGNOSES =

800-999 710-739 520-579 390-459 580-629 460-519 320-389 290-319

@ 780-799 240-279 680-709 V70-v82 @
A 4 Y
530-539 401-405 460-466 490-496 300-316 780-789 @ @ @ @
@ 493 @ @ 272 V70.0
401.9 @ @ 272.4

493.90

270-279




DIAGNOSES:

ROOT
AUROC: 0.664

M DIAGNOSES =

I
——————

e '

800-999 710-739 @ 390-459 580-629 460-519 320-389 V20-v29 780-799 240-279 V70-v82

@ @ @ 460-466 490-496 470-478 @ 780-789 249-259 270-279 @ @ @

493 @ 272 m
460-519:

(=)
G [ DISEASES OF THE
RESPIRATORY SYSTEM
AUROC: 0.730

460-466: CHRONIC ossﬁgg—gﬁ;e PULMONARY OTHER47D(I)é4E7.3:SES OF
ACUTE RESPIARS;&R:Y INFECTIONS DISEASE AND ALLIED THE UPPER RESPIRATORY
A CONDITIONS TRACT
- AUROC: 0.732 AUROC: 0.741

477:
Allergic rhinitis
AUROC: 0.743

493:
Asthma
AUROC: 0.730

493.90:
Asthma, unspecified type,
unspecified
AUROC: 0.735



DIAGNOSES:
ROOT
AUROC: 0.664

300-316:
NEUROTIC DISORDERS, PERSONALITY
DISORDERS, AND OTHER
NONPSYCHOTIC MENTAL DISORDERS
AUROC:
0.740




Conclusions

learned models are sometimes more accurate than conventional risk assessment tools

learned models can identify novel risk/protective factors

genetics can augment predictive value of clinical data in some cases

simple models often work well

but we have tools to gain insight from complex black-box models

NIH U54 Al117924
NIH T32 HG002760
NIH T15 LM007359

NIH R0O1 EY023292 NIH Big Data to
NSF IS 1218880 nnaiedgs (BL2l)




Learning associations between HSV-1 genotype and
host phenotype [Lee et al. J. Virology 2016; Kolb et al. PLoS Pathogens 2016]

] _,@»

e 69 viral genomes
m —*@ - O e features represent 547 haplotype blocks
e we have learned regression models using

-n-:t—i-n - fA - :
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Analysis of learned HSV-1 genotype-to-phenotype models
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Important variables are localized in the viral genome
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Using machine-learning to predict adverse outcomes

select cohort of subjects

retrospectively phenotype outcomes (e.g. determine who is a case/control)
define feature representation

learn models

a >~ w0 nh -

evaluate models



Defining feature representations

SRERSNE

demographics diagnoses procedures meds labs vitals genotypes

Y

(x1, X2, X3, X4 ..



An LSTM neural network for asthma exacerbations

(x % ) output

p+1l-sn layer y
demographics

LSTM » LSTM [——> oo » LSTM — LSTM

SN SN

diagnoses intervention

diagnoses intervention
embedding embedding embedding embedding

I I I I
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diagnoses interventions vitals, prior
(meds + procedures) exacerbations, etc.



An LSTM neural network model
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ldentifying important features via perturbation

* We can use hypothesis testing to characterize the effect of perturbing a feature

N\
Instance Perturbed Instance Loss Perturbed Loss
(X(l)7 y(l)) L [y(1)7 f (X(l)ﬂ
(X(Q)7 y(2)) L [y(Z)7 f (X(2))}

Null hypothesis: Median change in loss when perturbing featurej is O



