
Gene+environment risk models: 
whys and hows

Peter Kraft
Professor of Epidemiology and Biostatistics
Harvard T.H. Chan School of Public Health



• Genes are important
• The environment is important
• Risk models that include both can be useful



Risk models using E
• Framingham risk model (CVD)
• Breast cancer risk assessment tool
• Chronic and acute risk of VTE



Risk models using E
• Framingham risk model (CVD)
• Breast cancer risk assessment tool
• Chronic and acute risk of VTE
• Prostate cancer



Does adding G help?
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Training Models Including G & E

Data	(“A”)	
In	

Model	
(“YA(X)”)	
Out	

What	functional	form	should	the	
model	have?	What	variables	

should	be	included?	How	should	
they	be	coded?	
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Linear or logistic 
regression assuming 

additive effects 
within and across 

genetic and 
environmental factors
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(“YA(X)”)	
Out	

What	functional	form	should	the	
model	have?	What	variables	

should	be	included?	How	should	
they	be	coded?	

E[g(Y)] = a1 E1 + … + aK EK
+ b1 G1 + … + bK GL

Training Models Including G & E



Training Models Including G & E
What about non-linear effects (aka interactions)? 

School of hard knocks: linear terms pick up most of the 
signal, potential gains from including non-linear terms 

swamped by degrees of freedom.



Training Models Including G & E
What about non-linear effects (aka interactions)? 

School of hard knocks: linear terms pick up most of the 
signal, potential gains from including non-linear terms 

swamped by degrees of freedom.

This model choice has implications for extrapolated
risks in the tails.
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the additive joint-effects model was very strong in magnitude
and highly statistically significant.

Polygenic models used in disease risk prediction have gen-
erally assumed multiplicative joint effects of SNPs on the ab-
solute risk scale. We find that a multiplicative model for the
joint effects of multiple risk SNPs is substantially better than
an additive model. This provides some support for the use of
a multiplicative model based on individual-SNP marginal
odds ratios, as has been suggested in the context of risk
screening and implemented by several consumer genetics
companies (24, 57–60).

However, the statistically significant submultiplicative de-
viation of empirical data from multiplicative effects leaves
some scope for improvement. This deviation may reflect
the fact that the external odds ratios used to define the multi-
plicative risk score were overestimated due to the “winner’s
curse” (61, 62). In sensitivity analyses where we adjusted all
per-allele β coefficients by a constant deflation factor (ad-
justed β = 0.9 × unadjusted β) or by a factor proportional to
the per-allele odds ratio (ranging from 0.92 to 0.997 (63)),
themultiplicativemodelwas amuch betterfit (goodness offit:
P = 0.99 for constant adjustment and P = 0.45 for propor-
tional adjustment).This suggests thatmultiplicative riskmodels
constructed using odds ratios from initial discovery publica-
tions are likely to be overestimates (or underestimates) in the
upper (respectively lower) tails. However, when accurate odds
ratio estimates from large studies independent of the original
discovery samples are used, a multiplicative polygenic risk
model may be a good fit, and this model could be utilized to
identify a small number of women at markedly increased risk
who would benefit from risk-reducing interventions or more
intensive screening. We stress that risk estimates for women

in the tails of the risk distribution are projections beyond the
support of the bulk of the training data and that we had limited
statistical power to detect departures from multiplicativity in
the tails; note the wide confidence interval for the count ≥28
group in Figure 1.

Tests for pairwise interactions between the 23 SNPs failed
to show statistically significant departures from additivity be-
tween these low-penetrance variants. This may reflect the low
power to detect small departures from a pairwise additive risk
model, even with our large sample size. The departure from
an additive joint-effects model from the observed fitted risks
for the combination of 19 SNPs suggests the presence of ad-
ditive interactions between the SNPs and breast cancer risk.

This study had several other weaknesses. First, although
data on exposure variables were prospectively collected in
all of the cohorts, the instruments used to collect the informa-
tion were not uniform across cohorts, potentially inducing ex-
posure misclassification during harmonization. It has been
demonstrated that nondifferential misclassification of 2 inde-
pendent exposures preserves the validity of tests for additive
interaction (64). Furthermore, for ease of interpretation of ad-
ditive effects, these exposure variables were represented using
dichotomized categories, which may not be the optimal mod-
eling strategy for reflecting their biological associations with
breast cancer. However, in most cases the cutoffs for exposure
variables were not arbitrary, and a priori information was used
to choose them. Similarly, genetic variants were also dichoto-
mized assuming a dominant effect for the risk allele, without
a priori evidence for the same.Our results formarginal effects of
most of the SNPswere not substantially different from results of
previous studies that assumed log-additive SNP effects. More-
over, adjustment for age and cohort may not have sufficiently
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Figure 1. Estimated absolute risk of breast cancer according to number of risk alleles among 50-year-old non-Hispanic white females, derived
using case-control data from the Breast and Prostate Cancer Cohort Consortium (19, 39) and population incidence rates from the Surveillance,
Epidemiology, and End Results Program (52), and comparison with expected risk assuming multiplicative and additive joint-effects models.
Bars, 95% confidence intervals.
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SUMMARY
Risk-prediction models need careful calibration to ensure they produce unbiased estimates of risk for
subjects in the underlying population given their risk-factor profiles. As subjects with extreme high or
low risk may be the most affected by knowledge of their risk estimates, checking the adequacy of risk
models at the extremes of risk is very important for clinical applications. We propose a new approach to test
model calibration targeted toward extremes of disease risk distribution where standard goodness-of-fit tests
may lack power due to sparseness of data. We construct a test statistic based on model residuals summed
over only those individuals who pass high and/or low risk thresholds and then maximize the test statistic
over different risk thresholds. We derive an asymptotic distribution for the max-test statistic based on
analytic derivation of the variance–covariance function of the underlying Gaussian process. The method is
applied to a large case–control study of breast cancer to examine joint effects of common single nucleotide
polymorphisms (SNPs) discovered through recent genome-wide association studies. The analysis clearly
indicates a non-additive effect of the SNPs on the scale of absolute risk, but an excellent fit for the linear-
logistic model even at the extremes of risks.

Keywords: Case–control studies; Gene–gene and gene–environment interactions; Genome-wide association studies;
Goodness-of-fit tests; Polygenic score; Risk stratification.

∗To whom correspondence should be addressed.

Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

D
ow

nloaded from
 https://academ

ic.oup.com
/biostatistics/article-abstract/16/1/143/259068 by H

arvard Library user on 07 M
ay 2019

Biostatistics (2015)



Training Models Including G & E
What about non-linear effects (aka interactions)? 

School of hard knocks: linear terms pick up most of the 
signal, potential gains from including non-linear terms 

swamped by degrees of freedom.

Constraining GxE effects may improve model fit 
(assuming SNP-E interactions are mostly in the same direction).

Increasing exposure variance may as well.



activity (from sedentary city dwellers to very active rural

farmworkers) identified a qualitatively similar interaction
(the minor allele was associated with increased waist size

in the least active subjects but not in the most active;

p = 0.008) in a much smaller sample size (1129) [5].
Recent advances in our understanding of common ge-

netic markers associated with a broad range of human traits

and diseases enable us to turn this idea around: we might be
able to increase power detect gene–environment interac-

tions by increasing the range genetic susceptibility under

study [6]. Figure 2 contrasts an analysis that focuses on a
single nucleotide polymorphism (SNP) with an analysis

that considers a genetic risk score, for example a multi-

SNP genetic instrument for body mass index, as might be
used in a Mendelian randomization study [7]. In this si-

tuation, by capturing more of the relevant genetic vari-

ability, the SNP score increases power to detect gene–
environment interaction. This power increase is contingent

on the true joint gene–environment effects having the form

displayed in Fig. 2, or at least on most SNPs in the score
having gene–environment interaction effects in the same

direction, but there is already some evidence supporting

interaction effects of this type [8–11].
The discussion of exposure misclassification in Stenzel

et al. raises philosophical and increasingly important

practical issues. On a philosophical level, the exposures we

can measure are rarely if ever the etiologically relevant
exposures. Some degree of model misspecification and

exposure misclassification is inevitable. But on a practical

level, many of the exposures we can measure and on which
we could intervene are too expensive to measure directly in

extremely large sample sizes. Instead, epidemiologic

studies rely on inexpensive proxies—a practice which is
only likely to increase, as epidemiologists incorporate

different streams of Big Data into their studies [12]. The

results of Stenzel et al. suggest that the utility of designs
that sample from a larger cohort based on an exposure

proxy in order to identify who to genotype depends on the

accuracy of the proxy. We suspect that the same caution
applies to designs where the proxy is used to identify a

subset of subjects whose exposures will be measured using
a more expensive ‘‘gold standard’’ technology.

To return to the questions raised above: the relative lack

of compelling gene–environment interactions in human
observational studies is likely due to both the types of traits

studied and how they are studied. Complex diseases result

from the interplay of multiple biological processes affected
by multiple genes and exposures. Even if an underlying

intermediate trait exhibits strong gene–environment inter-

action, this interaction effect can be washed out at the
disease level. At the same time, limited variability in ex-

posure has likely also contributed to lack of power in hu-

man gene-environment interaction studies. Stenzel et al.
demonstrate that thoughtful design can overcome this

limitation. Design and analysis strategies that increase

variability in sampled exposures and genetic suscepti-
bilities deserve further consideration.
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What if G is Mediated thru E?

G E Y



What if G is Mediated thru E?

G E Y

If all of G’s effect is mediated thru E and 
we’ve measured E without error, then 

genetic terms b1,…,bK go to 0.  



What if G is Mediated thru E?

G YE

X
The truth is more 

like this.
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T A B L E 2 AUC for environmental score, polygenic score, and combined scores based on a genetic model matching results for CVD reported by
Morris et al

Environment Polygenic Unweighted Sum Weighted Sum
N cases ! = 0.1 ! = 0.4 ! = 0.1 ! = 0.4
63,746 0.635 0.536 (5× 10−8) 0.622 (5× 10−8) 0.621 (5 × 10−8) 0.623 (5 × 10−8) 0.622 (5 × 10−8)
63,746 0.635 0.666 (0.053) 0.693 (0.033) 0.688 (0.036) 0.701 (0.053) 0.693 (0.053)
∞ 0.635 0.782 0.800 0.784 0.800 0.788

In parentheses, P-value thresholds to select SNPs into polygenic score; N cases, number of cases in training sample with 2.05 controls per case as in CARDIoGRAM-
plusC4D.

T A B L E 3 NRI for a single risk threshold of 10% for combined scores based on a genetic model matching results for CVD reported by Morris
et al

Unweighted Sum Weighted Sum
N cases ! = 0.1 ! = 0.4 ! = 0.1 ! = 0.4

Case Control Case Control Case Control Case Control
63,746 − 0.0049 0.012 − 0.0038 0.0095 − 0.0060 0.015 0.0053 0.013
63,784 − 0.046 (0.79) 0.186 (0.031) − 0.045 (0.76) 0.176 (0.031) − 0.052 (0.85) 0.2 (0.056) − 0.049 (0.86) 0.186 (0.059)
∞ − 0.046 0.367 − 0.050 0.344 − 0.046 0.368 − 0.049 0.349

In parentheses, P-value thresholds to select SNPs into polygenic score; N cases, number of cases in training sample with 2.05 controls per case as in CARDIoGRAM-
plusC4D.
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F I G U R E 2 AUC of unweighted combined score as a function of
training sample size
Note: Genetic model chosen to match results for CVD reported by Mor-
ris et al., with 2.05 controls per case as in the CARDIoGRAMplusC4D
consortium. Rho: chip correlation between environment and outcome.
Gene: polygenic score alone. Environment: environmental score alone.

for alternative values of the prevalence and proportion of null
SNPs.

Note that at finite sample size, the optimal P-value thresh-
old varies according to the risk threshold and whether the case
or control NRI is maximized, and those thresholds are not the
ones that maximize AUC. Although the values of NRI are not
greatly changed by using the threshold that maximizes AUC,
this shows that the optimal genetic predictor can depend on the
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F I G U R E 3 AUC of weighted combined score as a function of
training sample size
Note: Genetic model chosen to match results for CVD reported by Mor-
ris et al, with 2.05 controls per case as in the CARDIoGRAMplusC4D
consortium. Rho: chip correlation between environment and outcome.
Gene: polygenic score alone. Environment: environmental score alone.

chosen measure of accuracy. However, the optimal threshold
is the same for continuous NRI and IDI as it is for AUC.

For this model, the optimal threshold to select SNPs at
the CARDIoGRAMplusC4D sample size is at approximately
nominal significance. Although this is well short of genome-
wide significance, it results in fewer than 5,000 expected type-
1 errors from 100,000 tests and an expected false discovery
rate of about 0.4. It is this false discovery rate, rather than

DUDBRIDGE ET AL. 13

T A B L E 6 NRI for a single-risk threshold of 8%, continuous NRI and IDI for combined scores based on a genetic model matching results for
breast cancer reported by Mavaddat et al

8% Risk Continuous NRI IDI
N cases Case Control Case Control
33,673 (5 × 10−8) 0.119 − 0.046 0.286 0.015 0.008
33,673 0.303 (0.0034) − 0.059 (0.89) 0.544 (0.0035) 0.029 (0.0035) 0.034 (0.0035)
∞ 0.441 − 0.094 0.771 0.041 0.089

In parentheses, P-value thresholds to select SNPs into polygenic score; N cases, number of cases in training sample with 0.99 controls per case as in the Breast Cancer
Association Consortium. ! = 0.4, "2

#$ = 0.8.
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F I G U R E 4 AUC of weighted combined score as a function of
training sample size
Note: Genetic model chosen to match results for breast cancer reported
by Mavaddat et al., with 0.99 controls per case as in the Breast Cancer
Association Consortium and "2

#$ = 0.1. Rho: chip correlation between
environment and outcome. Gene: polygenic score alone. Environment:
environmental score alone.

not far from the large sample limit. Again, in the near future
these projections will be refined by further prediction studies.

Table 6 shows NRI at a single risk threshold of 8%, which
is the 10-year absolute risk between ages 40–50 above which
chemoprevention is advised in the United Kingdom (National
Institute for Health and Care Excellence, 2013). Again the
optimal SNP selection depends on the criterion optimized.
Addition of SNPs to the Gail model would result in case NRI
of 0.119 and control NRI of −0.046 when selecting SNPs
by % < 5 × 10−8, improving to case NRI of 0.303 and con-
trol NRI of −0.059 with more liberal selection. The negative
control NRI implies that more women would be unnecessar-
ily recommended to receive chemoprevention, and because
most women do not develop breast cancer, this translates to
a large absolute number of women. Indeed the specificity for
the development of cancer is 92% for the environmental score
alone, but is 86% for the combined score, whereas the sensi-
tivities are 16% and 32% respectively. Thus, while AUC and

NRI appear encouraging, a large number of women would in
fact be misclassified under either score. The continuous NRI
shows that over half of cases are expected to increase their
risk score. Supplementary Tables S9 and S10 show results
for alternative values of the prevalence and proportion of null
SNPs.

Reflecting applications in screening, the breast cancer liter-
ature emphasises the proportion of cases present within some
highest-risk proportion of the population (Pharoah, Anto-
niou, Easton, & Ponder, 2008). This is a point on a Lorenz
curve, which resembles the receiver-operator characteristic
curve with specificity replaced by a population proportion.
For a proportion of the population q at highest risk accord-
ing to score X, the corresponding threshold of liability is√

&2$Φ
−1(1 − ') and so the proportion of cases selected by

that threshold is:

1 − Φ
⎛
⎜
⎜
⎜⎝

√
&2$Φ

−1(1 − ') − (($|) = 1)
√
var($|) = 1)

⎞
⎟
⎟
⎟⎠
.

Table 7 shows the proportion of cases within the top 10%,
20%, and 50% of the population at highest risk according to
the environmental score X and the combined score +̂,-./.
These results suggest, for example, that at current sample
sizes nearly half of cases could be detected by screening the
20% of the population with highest combined scores. With
larger training samples, over 90% of cases might be detected
by screening the half of the population with highest scores.
These results are compatible with those of previous studies
(Garcia-Closas et al., 2014; Pharoah et al., 2008). Supple-
mentary Tables S11 and S12 show results for alternative val-
ues of the prevalence and proportion of null SNPs. Similar to
other sensitivity analyses in the supplementary tables, these
yield modest quantitative changes with similar qualitative
conclusions.

3.3 Height
Here the example of height is used to illustrate a relation-
ship between a polygenic score and family history. Of course,
family history is an environmental risk factor for any heri-

CVD Breast Cancer

Dudbridge (2018) Genet Epidemiol



So, is it useful?
• Spreading risk distribution
• Identifying subgroups where G is actionable
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The PAR is commonly used to approximate the public
health implications of modifying or removing an exposure.
Although it is a useful quantifiable estimate of the impact of a
causal factor (in this case, genetic risk), it can rapidly
approach the upper bound of 100%, if the risk allele
frequency and relative risk of the disease are high, and may
be more inflated than other measures of genetic risk, such as
the heritability of disease liability, approximate heritability,
sibling recurrence risk, and overall genetic variance using a
log relative risk scale (Witte et al., 2014). The PAR is based on
the excess fraction of disease that is associated with the
presence of these risk alleles, but not necessarily the etiologic
fraction, or the fraction of disease that truly arises due to these
risk alleles. An additional limitation of the multi-locus PAR
and the polygenic risk score based on these loci is that they
do not account for interactions among SNPs. Furthermore, it
should be noted that these GWAS were done primarily in
non-Hispanic white populations so these risks may not
translate to other ethnic groups.

Despite these limitations, the multi-locus population
attributable risk and its related polygenic risk score are
promising tools for identifying those individuals at greatest
risk for cSCC, who would benefit from enhanced monitoring,
and those individuals who are at lowest cSCC risk, for whom
enhanced monitoring would be time-consuming, costly, and
unnecessary. Development of such a risk prediction tool for
cSCC would benefit from further refinement that includes
geneeenvironment interactions and from validation across
different populations, but would have the potential to be
clinically meaningful, impacting both screening and
prevention efforts. Next-generation studies relating the
polygenic contribution to cSCC risk will likely incorporate
newly discovered rare variants. Future studies may also
include variants identified through meta-analyses of existing
as well as forthcoming cSCC GWAS, which will increase
both the power and robustness of genetic associations used to
derive the polygenic risk score.

MATERIALS AND METHODS
We performed a search of the published literature using standard

search strategies involving the querying of two online databases

(MEDLINE and Cochrane) using key words squamous cell carci-

noma, skin, and genome-wide association from January 1980 to

January 31, 2017, followed by evaluation of the bibliographies of

relevant articles, and identified three GWAS that utilized cohorts

from Kaiser Permanente Northern California, Nurses’ Health Study,

the Health Professionals Follow-up Study, the Rotterdam Study,

and the 23andMe (Asgari et al., 2016; Chahal et al., 2016;

Siiskonen et al., 2016). We excluded one study that was primar-

ily a basal cell carcinoma GWAS that tested significant basal cell

carcinoma!associated SNP variants for their relationship with

cSCC, and was not a true SCC GWAS (Nan et al., 2011). Whereas

our methodology was not a formalized systematic review, we did

capture all published cSCC GWAS data. We compiled all SNPs

associated with cSCC that replicated in independent populations.

Odds ratios for SNPs associated with cSCC were used for the multi-

locus PAR calculations, and all studies assumed an additive

genetic model. We focused on bi-allelic SNPs, removing one

tri-allelic SNP, duplicates, or SNPs in linkage disequilibrium. If the

same SNP was reported in more than one GWAS, or if two SNPs at

the same locus were in linkage disequilibrium (R2 > 0.3), we used

the odds ratio from the largest study for the multi-locus PAR and

polygenic risk score calculations. Odds ratios for individual risk

alleles, as well as the multi-locus PAR for all alleles combined, are

shown in Table 1. The multi-locus PAR is weighted most heavily by

the risk alleles with both the highest prevalence and largest odds

ratios for cSCC. We used the formula below (derived from Rockhill

et al., 1998) to compute the multi-locus PAR

1! 1

1þPi

!
SjpijRRij

"

where i indexes SNP, and j indexes genotype at each SNP.

We also estimated the population distribution of polygenic risk

scores based on published cSCC GWAS. For risk prediction based on

multiple loci, we assumed a log-additive model for the joint effects

of SNPs and constructed polygenic risk scores by summing the

number of alleles across SNPs:

logðrelative riskÞ ¼ aþ SibiGi

Here bi is the log odds ratio per risk allele at SNP i (given in Table 1)

and Gi is the count of risk alleles at locus i and a is chosen so that the

average relative risk is 1.

The standard deviation of the polygenic risk score was calculated

as follows,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Si2qi

$
1! qi

%
b2i

q

where bi is log relative risk w log odds ratio for SNPi and qi is

(1 e risk allele frequency). For SNPs that were reported as protective,

we used the major allele as the risk allele in our calculations, along

with the corresponding cSCC odds ratio for the major allele. The

standard deviation of the polygenic risk score can be used to plot the

distribution of the relative risk due to known common SNPs: Relative

risk of cSCC per polygenic risk score percentile is shown in Figure 1,

with lines plotted for both males and females. We have plotted

percentiles of the polygenic risk score in relation to cSCC risk, rather

than the raw values themselves, to facilitate interpretation of the

score relative to the population. The plot for males accounts for

the underling increased risk of cSCC in male subjects (relative

risk ¼ 1.31 for males vs. females) (Whiteman et al., 2016).
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Figure 1. Cutaneous squamous cell carcinoma risk with increasing
Polygenic Risk Score.
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Women	<	40	years	old	

Preliminary results
from CARRIERS 

consortium, 
presented at AACR 

2019
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Determining clinical utility
• RCTs
• In the absence of large, expensive, and time 

consuming RCTs, we can simulate 
effectiveness using a model of disease natural 
history w/ or w/o intervention



Determining clinical utility

https://cisnet.cancer.gov/modeling/



Example: stratified breast cancer screening

(preliminary work from CISNET breast cancer working group
—van den Broek et al.)

Determining clinical utility



30	 40	 50	 60	 70	

Bi-annual	
screening	

starting	at	age	50	



30	 40	 50	 60	 70	

Annual	starting	
at	age	30	

Annual	starting	
at	age	35	

Hybrid	starting	at	
age	40		

Biannual	starting	
at	age	40		

Biannual	starting	
at	age	50		

Triannual	starting	
at	age	40		

Triannual	starting	
at	age	45		

5<RRG	

3<RRG<5	

2<RRG<3	

1.5<RRG<2	

1<RRG<1.5	

0.5<RRG<1.0	

RRG<0.5	



30	 40	 50	 60	 70	

30	 40	 50	 60	 70	

5<RRG	

3<RRG<5	

2<RRG<3	

1.5<RRG<2	

1<RRG<1.5	

0.5<RRG<1.0	

RRG<0.5	

Life	years	gained:	 	 	118	
Breast	cancer	deaths	averted:	 	6.7	

Life	years	gained:	 	 	196	
Breast	cancer	deaths	averted:	 	9.7	

Van	den	Broek		(in	progress)	



More can be better

• Qx risk factors
• Mammographic density
• PRS
• Emerging biomarkers

Page 4 of 6 Commentary | JNCI

(ie, lifetime risk of 17%-30%). However, the use of these drugs 
requires identification of women at those levels of risk. Our cal-
culations based on all risk factors combined indicate that about 
10% of women 50  years old found to be at moderate to high 

risk (capturing about 27% of cases in the population) could be 
identified as eligible for chemoprevention (Model 5 in Table 1), 
thus benefiting from a 38% reduction in risk (4). This could be 
improved to 11% of women capturing about 34% of cases when 

Figure 1. Partial Receiver Operating Curves (ROC) showing the percent-
age of cases of breast cancer expected to occur in groups of the popu-
lation at highest predicted risk (A, C), and graphs for the percentage 
of the population crossing breast cancer relative risk (RR) thresholds 
(compared with the average risk in the population) (B, D). Estimates are 
for a UK population of women aged 50 years, for eight risk prediction 

models, including different sets of risk factors and two polygenic risk 
scores (PRSs): the 76–single nucleotide polymorphism (SNP) PRS 
based on currently known SNPs explaining 15% of the familial risk 
(A, B) and an improved PRS explaining 30% of the familial risk (C, D). 
PRS = polygenic risk score; Qx = questionnaire; SNP = single nucleotide 
polymorphism.
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Misc Issues
• Implementing “complicated” E models

—good locally, maybe not globally
• Including biology in risk models




