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* Genes are important
* The environment is important
* Risk models that include both can be useful



Risk models using E

* Framingham risk model (CVD)
 Breast cancer risk assessment tool
 Chronic and acute risk of VTE



Risk models using E

Framingham risk model (CVD)
Breast cancer risk assessment tool
Chronic and acute risk of VTE

Prostate cancer



Does adding G help?









Training Models Including G & E

What functional form should the
model have? What variables
should be included? How should
they be coded?
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Training Models Including G & E
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Training Models Including G & E
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Training Models Including G & E

What about non-linear effects (aka interactions)?
School of hard knocks: linear terms pick up most of the
signal, potential gains from including non-linear terms

swamped by degrees of freedom.



Training Models Including G & E

What about non-linear effects (aka interactions)?
School of hard knocks: linear terms pick up most of the
signal, potential gains from including non-linear terms

swamped by degrees of freedom.

This model choice has implications for extrapolated
risks in the tails.
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The assumed log-
additive relative risk
model has notable
implications for
individuals in the
tails of the genetic
risk distribution,

More work is
needed to verify
that this model is a
good fit in the tails.

Kraft (2017) J Clin Oncol
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Training Models Including G & E

What about non-linear effects (aka interactions)?
School of hard knocks: linear terms pick up most of the
signal, potential gains from including non-linear terms

swamped by degrees of freedom.

Constraining GxE effects may improve model fit
(assuming SNP-E interactions are mostly in the same direction).

Increasing exposure variance may as well.
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What if G is Mediated thru E?

GtV




What if G is Mediated thru E?

oy E v

If all of G’s effect is mediated thru E and
we’ve measured E without error, then
genetic terms b,,...,b, go to 0.




What if G is Mediated thru E?

The truth is more
like this.
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So, is it useful?

e Spreading risk distribution
* |dentifying subgroups where G is actionable
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Can increase the
gradient of predicted
risks by including G,
but utility will depend
on context—e.g. on
the “action
threshold” where
expected benefits of
intervention
outweigh risks.
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Adding G can identify
2x as many folks with
RR>2



RR

0.0

0.2

0.4 0.6

%ile risk

0.8

1.0

Adding G can identify
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() 0
(®)]
©
()
>
< < -
25
s 5
0= M-
Z o .
: : Males
e
m“ < N | . . ) _'.‘-r{,
-g ) - e Females
ES . i ..__;_’_-_; o SENBERAy
Dq:) __.,__-__;‘_. S _—
o- T T I [ T I ] | I
10 20 30 40 50 o T " T

Percentile of the Polygenic Risk Score

Figure 1. Cutaneous squamous cell carcinoma risk with increasing
Polygenic Risk Score.
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Determining clinical utility

* RCTs

* |n the absence of large, expensive, and time
consuming RCTs, we can simulate
effectiveness using a model of disease natural
history w/ or w/o intervention



Determining clinical utility
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https://cisnet.cancer.gov/modeling/



Determining clinical utility

Example: stratified breast cancer screening

(preliminary work from CISNET breast cancer working group
—van den Broek et al.)
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Misc Issues

* Implementing “complicated” E models
—good locally, maybe not globally
* Including biology in risk models



The risk I took was calculated,

am [ bad at math.




