Concept Clearance: Developmental Genotype-Tissue Expression (dGTEx)

Jyoti Dayal

dGTEx Working Group: Joy Boyer, Tuba Fehr, Adam Felsenfeld, Laurie Findley, John Ilekis, Danuta Krotoski, Melissa Parisi, Zhaoxia Ren, Susan Taymans, Jennifer Troyer, Simona Volpi

February 10, 2020
Outline

- GTEx accomplishments
- dGTEx
 - Background
 - Proposal
 - Preparatory work
 - Consortium model
 - Budget
GTEx Accomplishments

- Established rapid autopsy program
- 965 donors (2010-2016)
- Surveyed gene expression in 53 tissues
- Provided new approach to map gene expression
- Decoded regulatory regions of genome

Over 2,000 consortium and non-consortium papers and 2nd most data access requests
Recommendation:
Creation of a genotype-tissue expression project for neonates and children.
Why Developmental?

A child is not a small adult.

(World Health Organization, July 2008)
Differences in Development

- Metabolism
- Endocrine function
- Immune function
- Drug response
- Exposure and susceptibility to environmental toxins
Goal: Establish resource database to study gene expression patterns across developmental stages.

- Fill key gaps in understanding gene expression in human development
- Provide insight on functional networks and pathways
- Understand how gene expression affects clinical factors (ex. drug response)
Proposal: Developmental Genotype Tissue Expression (dGTEx)
Objectives

Create an **atlas of tissue gene expression** on bulk tissues and single cell populations.

Analyze **regulatory variation** and its effect on gene expression.

Create and make available **biobank of tissues and associated data** for further characterization.
Study Design

- Early post natal (0-2 yrs)
- Pre-pubertal (8-12.5 yrs)
- Post-pubertal (12.5-18 yrs)

- Sequencing (WGS, RNA)
- Biospecimen collection (blood, bulk tissue and single cell)

- Chromatin accessibility
- Histone modification
- DNA methylation
Bioethics Preparatory Work

Explore ethical issues of posthumous genomic research in neonatal and pediatric settings

- Engage community
- Eligibility criteria
- Consent
- Follow up
Families amenable towards organ donation research

Work with existing infrastructure (Organ Procurement Organizations)
Consortium Organization

Tissue Procurement Center(s)
- Recruitment
- Pathology review
- Clinical data collection
- ELSI research

Tissue aliquots

LDACC
- Laboratory
- Data Analysis
- Coordinating Center

Statistical Analysis Data Integration

NIHCHD

NHGRI
LDACC Organization

Laboratory
- Purify nucleic acids (DNA and RNA)
- Perform whole genome and RNA sequencing
- Maintain biobanking facility

Data Analysis
- Perform basic genotyping and expression analyses
- Single cell analysis
- Deposit datasets in data repositories

Coordinating Center
- Work with Tissue Procurement Centers
- Monitor study progress and laboratory performance
- Prepare statistical and other reports
Distribution of Funds
(Dollars in Thousands)

<table>
<thead>
<tr>
<th>Solicitations</th>
<th>FY2021</th>
<th>FY2022</th>
<th>FY2023</th>
<th>FY2024</th>
<th>FY2025</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDACC</td>
<td>2,400</td>
<td>4,200</td>
<td>3,100</td>
<td>2,600</td>
<td>2,400</td>
<td>14,700</td>
</tr>
</tbody>
</table>

NICHD Council Approved

Not yet developed

| TOTAL* | 5,900 | 6,400 | 6,400 | 5,000 | 4,800 | 28,500 |

Total cost will be split between NHGRI and NICHD. Other ICs approached for additional funding.
Potential NIH Collaborations

Deeper Resource

~$6M/yr TC
120 donors
Limited donors and analyses

$10M/yr TC
200 donors
Increase statistical power
Establish role(s) of genes and regulatory elements

Addresses key strategic needs

Fills gap in genomic data resources
Ongoing Activities

• Human BioMolecular Atlas Program (HuBMAP) – develop open and global platform to map healthy cells in the human body primarily in adults
• Pediatric Cell Atlas (PCA) – understanding molecular characteristics of normal cells from children’s tissues

\[\text{dGTEx} \text{ – augment and complement single cell analysis from different developmental time points} \]
Project Timeline

Year 1
- Protocol development
- Network organization

Years 2-4
- Sequencing and tissue procurement ramp up
- Data analysis

Year 5
- Ramp down
- Continue analysis