Making use of our genome for life: strategic opportunities and challenges

Marylyn D. Ritchie, PhD

Department of Genetics

Institute for Biomedical Informatics

University of Pennsylvania

http://ritchielab.org

http://marylynritchie.com/podcast

Past paradigm for using genetics in clinic*

* Different from prenatal/newborn screening

Future paradigm for using genetics in clinic

- Identify patients "at risk" for follow-up, deeper evaluation, and phenotyping
- Identify patients for genotype-guided clinical trials
- ► Return information to patients about their genetic risks

Future paradigm for using genetics in clinic

► For this to become reality, we need to have access to sequence information across a patient's lifetime.

Mendelian Disease Risk Genes

Pharmacogenomics

Polygenic Risk Scores

Pathogenic				
Supporting	Moderate	Strong	Very strong	
Missense in gene with	Mutational hot spot or			
low rate of benign,	well-defined functional			
missense variants and	domain without			
pathogenic missenses	benign variation - PM1			
common - PP2				

Proposed adapted ACMG/AMP guidelines:

Pathogenic				
Supporting	Moderate	Strong	Very strong	
Non-truncating variant	Non-truncating variant	Non-truncating		
in gene or protein	in gene or protein	variant in gene or		
region with	region with	protein region		
0.8 ≤ EF < 0.9	0.9 ≤ EF < 0.95	with EF ≥ 0.95		
PM1_supporting	PM1_moderate	PM1_strong		

https://www.genome.gov/Health/Genomics-and-Medicine/Polygenic-risk-scores

Opportunities for Clinical Informatics

- ► EHR systems are starting to build capacity for storing genetic information as structured data
 - Example: Epic Genomics Module

Opportunities for Clinical Informatics

- EHR systems are starting to build capacity for storing genetic information as structured data
 - Example: Epic Genomics Module
- ► With Clinical Decision Support (CDS) built to disseminate the relevant genetic sequence information, healthcare providers across the system can find and use the information
 - Enormous potential to use genetic information outside of Medical Genetics Clinics
 - More on this topic in "Challenges"
- ► Through Health Information Exchanges (HIE), this relevant genetic information can be shared across health systems → following the patients wherever they go
 - More on this topic in "Challenges"
- ► As more knowledge is gained in Genomic Medicine, informatics systems can push annotation updates to patient records based on the genetic sequence data stored
 - More on this topic in "Challenges"

Challenges to overcome

Clinical Decision Support

- Need to build individual genomic indicators with CDS
- Need to update regularly
- Need to educate providers across the system (current medical education does not cover genetics extensively)

Health Information Exchange

- This *could* provide the infrastructure to have important genetic information follow patients throughout their healthcare journey
- Need genetic data to be sharedcurrently not always part of HIE
- Need to educate providers across systems

Genome Annotations

- Knowledge about genome function changes regularly
- Need to update annotations and interpretations
- Need infrastructure to alert providers

Challenges to overcome

- Cloud storage costs and egress
 costs are high
- These costs may exacerbate health disparities
- HPO (or any ontology) is not well supported in EHR
- Broad ontology adoption is lacking
- There are great standards for genomics (e.g., GA4GH)... but they are poorly adapted to broad clinical standards yet
- Similarly true for functional annotations

Future Needs: A strategy to address gaps and barriers

