Stanford MEDICINE FORD **Department of Genetics** Machine learning for genomic discovery Anshul Kundaje Twitter:@anshulkundaje Website: http://anshul.kundaje.net

Decoding regulatory DNA

Mapping biochemical markers of regulatory activity

epigenomics

PROJECT

BPNet: Mapping DNA sequence to base-pair resolution profiles

Ziga Avsec

Julia Zeitlinger

Avsec et al. 2021 Nature Genetics

BPNet predicts reg. profiles from sequence with unprecedented accuracy

Opening up the blackbox

DeepLIFT: Inferring predictive nucleotides at individual binding events

Avanti Shrikumar

Alex Tseng

Shrikumar et al. 2017 ICML Shrikumar et al. 2019 ISMB Tseng et al. 2020 NeurIPS Greenside et al. 2018, ECCB

<u>TF-MoDISCO:</u> Cluster and consolidate predictive subsequences into contribution weight matrix (CWM) motifs

Insight: conv. filter contributions are integrated at the nucleotide level

Complex repertoire of motifs due to cooperative binding

50 motifs for 4 TFs!

Subtle differences in Nanog motifs

Subtle low affinity patterns with helical periodicity flanking Nanog motif

Nanog homeodomain Hayakshi et al. PNAS 2015

10 bp periodic binding of homeobox TFs to nucleosome DNA from recent *in vitro* NCAP-SELEX data (Zhu et al. Nature 2018)

Soft syntax: helical spacing preference between Nanog motifs in the genome

Motif pairwise distance

Using the model as an "oracle" to perform large-scale *in-silico* experiments

Deciphering syntax dependent TF cooperativity with synthetic designed sequences

Deciphering syntax dependent TF cooperativity with in-silico genome editing

Distance between motifs (bp)

Using the model to design CRISPR experiments to validate discoveries

Sabrina Krueger, Melanie Weilert

Model-driven prioritization of functional genetic variation

Predicting and interpreting variants influencing multiple layers of regulatory

Prioritizing putative causal variants in disease-associated loci

rs1237999 in the PICALM locus for Alzheimer's disease GWAS disrupts an oligodendrocyte-specific FOS enhancer

Summary & Outlook

- Predictive blackbox models + interpretation frameworks
 - Prediction, de-noising & Imputation
 - Biological discovery of causal phenomena
 - Hypothesis generation and optimized experimental design
- Important to be transparent about the limits, blind spots, biases
 & pitfalls of each model
- What do we need?
 - Large-scale, harmonized ML-ready observational and perturbational data
 - Decentralized, scalable, affordable compute resources
 - Unified ecosystem: Compute ⇔ Data Portals ⇔ Model Zoos ⇔ Literature Mining
 - New user-interfaces to models for interactive discovery, search and design
 - Incentivizes collaborative efforts & diverse contributions

Democratizing ML for genomics: http://kipoi.org/

Kipoi (pronounce: kípi; from the Greek κήποι: gardens) is an API and a repository of ready-to-use trained models for regulatory genomics. It currently contains 1709 different models, covering canonical predictive tasks in transcriptional and post-transcriptional gene regulation. Kipoi's API is implemented as a python package (github.com/kipoi/kipoi) and it is also accessible from the command line or R.

Numbers

of models: 1709

of model groups: 16

of contributors: 6

of model groups supporting postprocessing:

Variant effect prediction: 11/16

Model groups by tag

- Easy installation of dependencies
- Few lines of code to use models to predict
- Exactly reproduce analyses
- Trivial to compare models
- Retrain models
- Fine tune models
- Combine models
- Contribute models

Kundaje lab

STANFORD Genetics

(Physics)

Collaborators

Maxim Zaslavsky (CS)

Vivek Ramalingam (Postdoc)

Balsubramani

Eran Kotler (Postdoc)

Zahoor Zafrulla (ML engineer)

1DP2OD022870

Alex Tseng (CS)

(CS)

Laksshman Anusri Pampari (CS) Sundaram (CS)

Kristy Mualim (Bioinformatician)

Funding

Jacob Schreiber (Postdoc)

Mahfuza Sharmin (Postdoc)

R01ES02500902

(Postdoc)

(Postdoc)

1R01HG009674

1U01HG009431

1U24HG009446

ENCODE

