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“So for us, one of the more immediate benefits 
of genomic sequencing is we could have that 
discussion with the parents and change our 
goals of care to comfort as opposed to 
prolongation with futile intensive care.” 
(Neonatologist) 

Char DS, Lee SS, Magnus D, Cho M. Genet Med. 2018 11;20(11):1455-1461.
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“They’ve spent probably over four million dollars on him just in 
two years of the transplant, pre-transplant, post-everything. And 
if we had known about his [genetic mutation], his genes being 
bad, if we had known about it in advance, I always think what if 
they had declined to treat him.” (F1)

“If there’s preexisting conditions or the potential for conditions 
to come up in the future, how much does a medical institution 
invest in helping somebody that potentially is going to die?” 
(F22)

Gal DB, Deuitch N, Lee SSJ, Simon RT, Char DS. Pediatr Crit Care Med. 2021 Feb 12



“We see distrust across the board in all of our 
institutions, you see it with the measles 
outbreak and the anti-vaxxers, there’s distrust of 
pharmaceutical companies, there’s distrust of 
the mega-industry of healthcare. That will get 
worse and more intense with genome testing.” 
(F27) 

Gal DB, Deuitch N, Lee SSJ, Simon RT, Char DS. Pediatr Crit Care Med. 2021 Feb 12







DoD AI Ethical Principles

• Responsible: Humans should exercise judgment & remain responsible for use 
& outcomes

• Equitable: Avoid unintended bias & inadvertent harm
• Traceable: Transparent & Auditable methodologies, data sources, design 

procedures
• Reliable: Explicit domain of use; safety tested across entire life cycle of use in 

that domain
• Governable: Possess the ability to detect/avoid unintended harm & for human 

disengagement or deactivation

Defense Innovation Board, AI Principles: Recommendations on the Ethical Use of Artificial Intelligence by the Department of Defense, 
accessed online at media.defense.gov/2019/Oct/31/2002204458/-1/-1/0/DIB_AI_PRINCIPLES_PRIMARY_DOCUMENT.PDF (Alka Patel)





Additional Ethical Principles for 
Healthcare Applications

• Non-Maleficence: Do no harm; patient benefit; 
improved clinical outcomes

• Autonomy: Patient still in control of their healthcare; 
liability for AI system malfunction related to degree of 
autonomy; ownership of data

• Equity: Absence of bias, fairness in distribution, access and 
benefits of groups 

U.S. Food & Drug Administration (FDA) Digital Health Center of Excellence C, ,. Artificial Intelligence/Machine Learning (AI/ML)-Based 
Software as a Medical Device (SaMD) Action Plan. 2021. https://www.fda.gov/media/145022/download

Stanford University. Collaborative Community on Ophthalmic Imaging (CCOI). 2020:https://www.cc-oi.org/. 

Abramoff MD, Tobey D, Char DS. Lessons Learned About Autonomous AI: Finding a Safe, Efficacious, and Ethical Path Through the
Development Process. Am J Ophthalmol. 2020;214(1):134-142. doi:10.1016/j.ajo.2020.02.022 



National Defense Authorization Act, January 1, 2021:
White House Interagency Coordination of AI including Ethical 
Issues
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“There is an old saying that a problem well put is 
half solved.  This much is obvious.  What is not 
so obvious, however, is how to put a problem 
well.”

-Churchman, Ackoff, Arnoff
Introduction to Operations Research, 1957, 

page 67.
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6 Premises
• Multiple stakeholders impacted by any ML-HCA. These 

stakeholders can be identified by examining the 
design/deployment contexts 

• Stakeholder groups have different values, and explicit or 
implicit goals for the ML-HCA, that should and can be 
ascertained 

• Process of design and development of an ML-HCA involves 
making a series of decisions 

• How a stakeholder makes these decisions, or would want 
these decisions to be made, reflects their underlying values

• Where stakeholder groups disagree or their values are at odds 
about resolving these decisions—where values collide—are 
where ethical problems are most likely to emerge 

• Some value collisions may mark novel ethical concerns. Many 
can be resolved by drawing on prior scholarship on similar or 
related problems.
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3 Interacting Data Elements

• 1) The model and the output it provides 
• 2) The workflow into which the model output 

is introduced, and policy for allocating an 
intervention at a certain output 
recommendation

• 3) The benefit-harm trade-off of the 
intervention itself. 

• Value mismatches can arise in any of these 
three elements. 

Shah, N. 



Case study: ML-mortality prediction to guide advance 
care planning



Stakeholders

Figure: N. Deuitch, MSGC



Value Collisions

Ethical Concern Patient Value Clinician Value Designer Value

Perspectives on death and 
end-of-life care

Want mortality prediction to 
inform ACP decisions

ML prediction gives numeric 
legitimacy to 
prognosis/prognostication

Concern that patients and 
clinicians won’t know what 
to do with mortality 
prediction information

Implementation of algorithm 
in health care setting

Important to get this 
information from a trusted 
clinician such as a PCP

Concern around algorithm 
further burdening the 
Palliative Care team or being 
used in unintended ways

The algorithm has low 
pretest probability and the 
outcome is not harmful --
ideal ML “test case”

Patient involvement Would like knowledge of 
mortality prediction

Agree with patient 
knowledge as long as 
accompanied with 
conversation

May not be an accurate 
predictor of mortality, so 
should not be shown to 
patients -- issue of 
misinterpretation

Transparency Details not important but 
would like overall idea of 
how prediction works

Important to know about 
how algorithm works, 
emphasis on use of pre-
specified trial endpoints

More important to 
demonstrate algorithm 
validation than methodology 

External Pressures & Study 
Integrity

Concerned about media Concern about PR blowback 
if misinterpreted



Design of the model: 
-Perspectives on end-of-life care 

Workflow: 
-Who should receive the mortality prediction (i.e. Should patients 
have access to the mortality predictions? Should all clinicians? 
Should only palliative care clinicians?)
-Unintended uses of mortality prediction

Benefit-harm trade-off of the intervention: 
-How and if to protect ML mortality prediction research from 
external pressures, like social media scrutiny before research is 
completed 



“At one point they were asking me can you guys predict if 
they’ve [patients] got 24 hours or less?  Because if they’ve 
got 24 hours or less, we’re going to put them in Obs and not 
admit them, and Obs means they’re not officially admitted, 
and if they die in Obs, they don’t count as a death.  And I 
was like, I feel like I’m going to vomit into my mouth right 
now because you’re telling me you want to know they’re 
going to die in 24 hours because you wouldn’t put them in 
a normal inpatient acute care bed, you’d put them in 
Obs!?!”



Design team was able to prioritize needed efforts focused on: 
● examining alternative implementation strategies to delivery of 

mortality predictions into the workflow (i.e. directly to patients 
or to hospitalist clinicians)

● explicitly clarifying to clinicians, administrators, and patients 
that the mortality prediction was only evaluated to predict 
need for ACP not other mortality-related needs, and renaming 
the prediction as “ACP needs probability” rather than 
“mortality prediction”; 

● shielding their ongoing research into mortality prediction from 
social media scrutiny until endpoint driven studies were 
completed (i.e. enacting protections similar to blinded clinical 
trials) 



● When should future ethical analyses should be 
conducted as this (or any ML-HCA) is revised 
and deployed more broadly? 

● How to better streamline the ethical analysis 
process (whether questions can be delivered 
via survey, which questions are of the highest 
yield, and the optimal number of stakeholder 
assessments needed)? 
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