The 3D genome and predictive gene regulatory models

Christina Leslie

Computational and Systems Biology Program Memorial Sloan Kettering Cancer Center http://cbio.mskcc.org/leslielab

Deciphering gene regulation

- Transcriptional regulation coordinated by transcription factors (TFs) binding to promoter and enhancer elements
- Distal enhancers may be >1Mb from promoters, physically interact via chromatin looping
- 1D epigenomic data (chromatin accessibility, histone marks) map presence of candidate enhancer elements but not their connectivity

Epigenomic data encodes regulatory information

 E.g. chromatin accessibility (ATAC-seq) maps loca regulatory elements and encodes global differentiation state

Philip et al., Nature 2017

Cleavage of sensitive sites

• Predictive models of gene regulation could infer the role of genomic elements, individual genetic variants on target gene expression

Predictive gene regulatory models

 Previous GRMs predict gene expression (or fold change) from DNA sequence and accessibility/activity of regulatory elements in order to decipher gene regulation

- Missing information: *connectivity* of promoter and enhancers
- Idea: use 3D interaction data in graph neural network GRMs

Mapping the 3D genome

- Hi-C, chromosome conformation capture
 - Capture 3D interactions: crosslink DNA (now in situ), restriction enzyme digest, proximity ligation, pull down, paired-end sequencing

 Read pair = "contact"; build contact matrix for input cell population

Hierarchical folding of chromatin

TAD

- TADs and CTCF/cohesin loops believed to play an "insulator" role in gene regulation
- 3D promoter-enhancer interactions can be more subtle than structural loops

Adapted from Wright et al., 2019

loop

Methods matter: HiC-DC+

- "Hi-C direct caller": use read counts from raw contact matrix directly, without normalization
 - Estimate background model (expected read count) directly from data using negative binomial regression
 - Covariates: genomic distance (spline fit), mappability, effective bin size (related to restricting enzyme density), GC content
 - Assign P value (or Z-score) to interactions

 HiC-DC+: Efficient code, extends to HiChIP, differential interactions between cell types

> Carty et al., Nat Commun 2017; Sahin et al., in revision, bioRxiv 2020

Methods matter: HiC-DC+

- Gain of promoter-enhancer for diabetes gene PDX1 in guided pancreatic differentiation
 - With Danwei Huangfu and Eftychia Apostolou (as 4D Nucleome project)

GraphReg: graph neural networks for gene regulatory models

- Idea: use Hi-C/HiChIP to encode long-range chromatin interactions as a graph, propagate information information via graph neural networks (GNNs)
- Nodes of graph = genomic bins, edges = 3D genomic interactions
- Input features: epigenomic data or DNA sequence
- Output: gene expression (at node)

Linear genome

Epigenome-based gene regulatory model, Epi-GraphReg

- Predict gene expression from *activity* and *connectivity* of regulatory elements
- "Cell type agnostic": can generalize to a new cell type given cell-type specific 1D and 3D inputs

Epi-GraphReg architecture

- Train on 6Mb input regions
- Poisson loss on middle 2Mb bins

HiChIP graph

GAT

Prediction of gene expression

Train on cell line data, assess performance on held-out chromosomes

Sequence-based gene regulatory model, Seq-GraphReg

- Predict expression and 1D epigenomic signals from genomic DNA sequence + 3D connectivity
- "Cell type specific": captures TF binding signals that are specific to the training cell type

Seq-GraphReg architecture

- Sequence-to-1D-epigenome component of the model is similar to Basenji (Kelley et al., 2018)
- Learn DNA sequence features that predict regulatory element activity, combined over HiChIP graph to predict expression

Prediction of gene expression

• Train on ENCODE GM12878 and K562 cell line data, assess performance on held-out chromosomes

Prediction performance

A: all genes, B: all expressed genes, C: expressed genes at least 1 HiChIP edge, D: expressed genes with at least 5 HiChIP edges

- Graph NN models outperform baseline sequence models (1D dilated CNNs) in all cases
- Sequence-based prediction is more difficult
- Prediction of expression *per se* is not the point: want to interpret the model

Feature attribution to predict functional enhancers

DHPS

• DeepSHAP identifies features/genomic bins that contribute most to specific gene predictions

Evaluation of enhancer prediction with FlowFISH

Sequence gRNAs in 6 bins infer effect of gRNAs on expression

Fulco et al., Nat Genet 2019

- CRISPRi-FlowFISH: CRISPR inactivation screen against candidate enhancers, reads out expression change of target gene
- Activity-by-contact (ABC): score for predicting functional enhancers based on activity (DNase, H3K27ac) and Hi-C contacts

GraphReg improves functional enhancer prediction

- Use FlowFISH experiments sufficient data on distal elements (2906 candidate elements for 21 genes)
- GraphReg models with DeepSHAP or saliency outperform CNN models, ABC
 DE-G Pairs (2574)

GraphReg models access distal information unavailable to CNNs

 Dilated CNN has wide receptive field, but feature attribution shows they rely on promoter-proximal inputs

Conclusions

- Graph neural network model can predict gene expression (TSS output) across large genomic regions from 3D and 1D data, or from DNA sequence using 1D epigenomic prediction as auxiliary task
- Epi-GraphReg and Seq-GraphReg outperform baseline dilated 1D CNN models for gene expression prediction
- More importantly, can use feature attribution to predict functional enhancers for genes
- GraphReg outperforms CNN models and ABC score for identifying enhancer elements, as validated by CRISPRi-FlowFISH

Rapid developments in machine learning, epigenomics/3D genomics, and genome editing enable advances in modeling and deciphering gene regulation

Acknowledgements

Leslie lab

Alireza Karbalayghareh **Merve Sahin** Wilfred Wong Yuri Pritykin (now PI at Princeton) Erik Ladewig **Rose DiLoreto** Alli Pine Zakieh Tayyebi Vianne Gao Rui Yang Karen Chu Sneha Mitra (intern) Brennan Lee (MS) Saloni Vishwakarma (MS)

Collaborators (3D projects)

Effie Apostolou Danwei Huangfu Aaron Viny Ari Melnick Steve Josefowitz Alexander Rudensky Andrea Ventura Ping Chi Joseph Sun

STARR CANCER CONSORTIUM

