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Deciphering gene regulation

Transcriptional regulation coordinated by transcription factors (TFs)
binding to promoter and enhancer elements

Distal enhancers may be >1Mb from promoters, physically interact
via chromatin looping

1D epigenomic data (chromatin accessibility, histone marks) map
presence of candidate enhancer elements but not their
connectivity
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Epigenomic data encodes regulatory

information

Tn5 transposase
Cleavage of s

* E.g.chromatin accessibility (ATAC-seq) maps loca & l@@/@@@@

regulatory elements and encodes global

differentiation state

Functional
CD8 T cells

Tumor-
specific
dysfunctional
CD8 T cells

/ \
Pdcd Ing e S 5N
"H'l'—" HH DNAfra? mmmmm .from
<_| _23kb l_> itive region
1 | | i . A
1 - | i k i h.. [ “
| low Pdcd1,
- | | . L h . .
high Ifng expression
i . | 1 l i h. | ln
JL_ e add L | L n
1_ wewaddi i . | ™ Lad N
| . Al Il - gain of Pdcd1,
| C—— i | L . .| | loss of Ifng expression
L_ Lo Loduud 1 i i 1 lh |
J.h, L hoddad 1 i l l lL_. - &Jl
l P L i ) i l 1 lL ) L

Philip et al., Nature 2017



Ascribing function to non-coding
genetic variants

 Most GWAS signals reside in non-coding regions, causal variant
assumed to be regulatory, i.e. alter regulation of target gene
(possibly quite distal)

* Predictive models of gene regulation could infer the role of genomic
elements, individual genetic variants on target gene expression
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Predictive gene regulatory models

* Previous GRMs predict gene expression (or fold change) from DNA
sequence and accessibility/activity of regulatory elements in order

to decipher gene regulation
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* Missing information: connectivity of promoter and enhancers
* |dea: use 3D interaction data in graph neural network GRMs



Mapping the 3D genome

* Hi-C, chromosome conformation capture

— Capture 3D interactions: crosslink DNA (now in situ),
restriction enzyme digest, proximity ligation, pull
down, paired-end sequencing

crosslink fill ends & purify, shear DNA & PCR amplify
DNA mark W|th biotin pull down biotin library
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Adapted from Arima product sheet

— Read pair = “contact”; build contact matrix for input
cell population



Hierarchical folding of chromatin

* TADs and CTCF/cohesin loops TAD loop
believed to play an “insulator”
role in gene regulation

* 3D promoter-enhancer

interactions can be more subtle
than structural loops
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Methods matter: HiC-DC+

e “Hij-C direct caller”: use read counts from raw contact
matrix directly, without normalization

— Estimate background model (expected read count) directly
from data using negative binomial regression

— Covariates: genomic distance (spline fit), mappability, effective
bin size (related to restricting enzyme density), GC content

— Assign P value (or Z-score) to interactions

bin, d; bin

RE sites RE sites

 HiC-DC+: Efficient code, extends to HiChlP, differential
interactions between cell types

Carty et al., Nat Commun 2017;
Sahin et al., in revision, bioRxiv 2020



Methods matter: HiC-DC+
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GraphReg: graph neural networks for
gene regulatory models

* |dea: use Hi-C/HiChlIP to encode long-range chromatin
interactions as a graph, propagate information
information via graph neural networks (GNNs)

* Nodes of graph = genomic bins, edges = 3D genomic
Interactions

* |nput features: epigenomic data or DNA sequence
* QOutput: gene expression (at node)
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Epigenome-based gene regulatory
model, Epi-GraphReg

Kharbalayghareh et al.,
in preparation
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Output: CAGE-seq
(gene expression at TSS)

* Predict gene expression from activity and connectivity of
regulatory elements

 “Cell type agnostic”: can generalize to a new cell type given
cell-type specific 1D and 3D inputs



Epi-GraphReg architecture

Inputs: DNase-seq, 100bp
H3K4me3 (promoter mark),
H3K27ac (enhancer mark)

[

GAT learns to weight W,
edges Wiz \ Walwy, Wi - WWTM

Graph: H3K27ac HiChlP,
filtered by HiC-DC+

5Kb
Output: CAGE-seq

* Train on 6Mb input regions [ ] [ ] C] B @

e Poisson loss on middle 2Mb bins

HiChIP graph



log2 (pred + 1)

Prediction of gene expression

* Train on cell line data, assess performance on held-out
chromosomes

E-GraphReg, mESC
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E-GraphReg, GM12878/K562

m<5: R= 0.629, MSE= 3.785
m>=5: R= 0.636, MSE= 1.909
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Sequence-based gene regulatory
model, Seq-GraphReg

Kharbalayghareh et al.,
in preparation
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Input: DNA sequence Output: accessibility,

histone marks
* Predict expression and 1D epigenomic signals
from genomic DNA sequence + 3D connectivity

e “Cell type specific”: captures TF binding signals
that are specific to the training cell type



Seq-GraphReg architecture

GAT model
n 1D conv, max pool: n
1D dilated conv, dilation rate: 2n 60 1000x 64 12001
—B-EE B o
GAT, attention heads: n (Skb resolution)
Graph from H3K27ac HiChIP

Sequence model

60 x 100k 60 x 1000 x 64 60 x 1000 x 3

DNA sequence

| B n H3K4me3, H3K27ac, DNase
(6MB)

(100bp resolution)

Sequence-to-1D-epigenome component of the model is similar to
Baseniji (Kelley et al., 2018)

Learn DNA sequence features that predict regulatory element
activity, combined over HiChIP graph to predict expression




Prediction of gene expression

 Train on ENCODE GM12878 and K562 cell line data,
assess performance on held-out chromosomes

S-GraphReg, mESC

n=0: R= 0.784, NLL= 483.2
11n>0: R=0.757, NLL= 917.5

S-GraphReg, GM12878/K562
m<5: R= 0.361, MSE= 5.812 }
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Prediction performance
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A: all genes, B: all expressed genes, C: expressed genes at least 1 HiChIP edge,
D: expressed genes with at least 5 HiChIP edges

Graph NN models outperform baseline sequence models (1D
dilated CNNs) in all cases

Sequence-based prediction is more difficult

Prediction of expression per se is not the point: want to interpret
the model



Feature attribution to predict
functional enhancers

* DeepSHAP identifies features/genomic bins that

contribute most to specific gene predictions
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Evaluation of enhancer prediction with
FlowFISH
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Fulco et al., Nat Genet 2019



GraphReg improves functional
enhancer prediction

* Use FlowFISH experiments sufficient data on distal elements
(2906 candidate elements for 21 genes)

* GraphReg models with DeepSHAP or saliency outperform
CNN models, ABC
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GraphReg models access distal
mformatlon unavallable to CNNs
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* Dilated CNN has wide receptive field, but feature
attribution shows they rely on promoter-proximal inputs



Conclusions

* Graph neural network model can predict gene expression (TSS
output) across large genomic regions from 3D and 1D data, or from
DNA sequence using 1D epigenomic prediction as auxiliary task

* Epi-GraphReg and Seq-GraphReg outperform baseline dilated 1D
CNN models for gene expression prediction

 More importantly, can use feature attribution to predict functional
enhancers for genes

* GraphReg outperforms CNN models and ABC score for identifying
enhancer elements, as validated by CRISPRi-FlowFISH

Rapid developments in machine learning, epigenomics/3D
genomics, and genome editing enable advances in modeling
and deciphering gene regulation
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