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Accurately predicting a clinical outcome is
important but the key question is why
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Identifying predictive markers is important
but the key question is why
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Explainable Al for clinical genomics

ML model
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data = Explainability is more important than accuracy.
Molecular data * How to learn or select features that are interpretable?
(genotype, expression) = Which features contributed to a certain prediction and how!?
= How to make biological or clinical sense of a black-box model?




Explainable Al for biology and health
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Explainable Al for cancer precision medicine

" Acute myeloid leukemia

(AML)

= Cancer of the blood and

bone marrow cells

= 5 year survival rate: 26%

= Chemotherapy
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* |dentify explainable gene expression markers by jointly learning

the model with prior knowledge on genes’ driver potential

(based on genomic, transcriptomic, and functional data).

Lee*, Celik™*, et al. (2018) [[ Weinberger et al. (2020) || Erion*, Janizek*, Sturmfels* et al. (2021)
Nature Communications NeurlPS In Press Nature Machine Intelligence




= Chemotherapy

Explainable Al for cancer precision medicine

" Acute myeloid leukemia

(AML)

= Cancer of the blood and
bone marrow cells

= 5 year survival rate: 26%
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Interpretable Predicted response
ML system to 50 drugs

Mitoxantrone [H
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Making
explainable
prediction

Best drug combinations

being treated with one drug at a time
185 FDA approved drugs = 17,020 pairs

for patient X & Why?

Mitoxantrone
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+ Ara-C
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concentration

Lee*, Celik*, et al. (2018)
Nature Communications NeurlPS

Weinberger, et al. (2020)




EXPRESS: Explainable prediction

of drug synergy in AML
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Joseph Janizek, et al. Explainable Al reveals HSC-like

expression signature as relevant to drug synergy in AML.

NHMHH ...NHH EXPRESS

Most
informative
genes —

WAAAA

MGH/Harvard

Prof. Kamila
Naxerova

100%

Predicted "]

ex vivo %0%1
drug synergy

0%

Drug dose

Explanations for each prediction

Most
significant
pathways

@ LSC Monocytic
Signature Signature

DLL3

&



Training data for EXPRESS: Beat AML data
(Tyner et al. Nature 2018)
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Complex non-linear models more accurately

Comparison of Model Performance by 1-MSE
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Our solution is to make a prediction with

explanations =

Eliminating the accuracy vs. interpretability tradeoff
= Accuracy vs. interpretability [= Broader applicability of ML to biomedicine
= Simple models often lead to lower performance.

= Complex models are often considered to be a black box.

Linear model Complex model f (.) Our approach, SHAP
X: Features Y: Outcome Black Box For a particular prediction
X

= SHAP can estimate feature importance for a particular prediction for any model.

Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. NeurIPS (2018) Oral presentation (top 1%),
NeurlPS workshop on Interpretable ML (2016) — Best paper award




How exactly can we estimate feature importance?
— SHapley Additive exPlanation (SHAP) values

Why?!
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How exactly can we estimate feature importance?
— SHapley Additive exPlanation (SHAP) values

& Base rate Prediction for John
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How did we get here!

Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. NeurIPS (2018) Oral presentation (top 1%),
NeurlPS workshop on Interpretable ML (2016) — Best paper award




How exactly can we estimate feature importance?
— SHapley Additive exPlanation (SHAP) values
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Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. NeurIPS (2018) Oral presentation (top 1%),
NeurlPS workshop on Interpretable ML (2016) — Best paper award




How exactly can we estimate feature importance?
— SHapley Additive exPlanation (SHAP) values

The order matters!

SHAP values result from averaging over all N! possible orderings

They are the only solution that satisfies three important properties
We need to develop efficient methods to estimate or compute exact SHAP values.
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Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. NeurIPS (2018) Oral presentation (top 1%),
NeurlPS workshop on Interpretable ML (2016) — Best paper award




Providing explainable prediction improves
anesthesiologist’s ability to predict hypoxemia

Scott

Real-time hypoxemia prediction

= Our Prescience method Loy
predicts hypoxemia in the
next 5 minutes and provides 0-81
explanations in real time.
0.6}

If anesthesiologists currently
anticipate 15% of events, then
Prescience alone could
anticipate 43% of events

Our approach, SHAP
For a particular prediction

o
I

= Anesthesiologist + Prescience

TPR (% of desats correctly predicted)
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Explainable Al predict 0.0L_v . | | 1 |
levels during anaesth 0.0 0.2 0.4 0.6 0.8 1.0

FPR (% of non-desats incorrectly predicted)

Scott M. Lundberg, Bala Nair, Monica S.Vavilala, Mayumi Horibe, Michael |. Eisses, Trevor Adams, David E. Liston, Daniel King-Wai Low, Shu-Fang
Newman, Jerry Kim, and Su-In Lee. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery.
Nature BME 2,749-760 (Oct 2018) - Featured on the Cover;cited >150 times over 2 years




Making tree ensembles

(]
interpretable
Logistic Regress ion _o = ia = 74.6%
* Why tree ensembles? ,fm
aYaVaYaVaYa¥a¥a Tree models Ens:::j;:::
= Gradient Boosted Trees and Random Forests are e e
Bayesian Techniques 31.8%
widely used state-of-the-art models. R ——
= Over half (17/29) of all Kaggle competition winners in om:r=;s
2015 used XGBoost (Chen and Guestrin). . o
GANs [ 1.9%

* Tree SHAP reduces the exact computation of SHAP values from exponential

to polynomial time. Direct Solution O(TLZM) Exponential
to
Tree SHAP ~ O(TLD?) Polynomiat

Scott Lundberg, Gabe Erion, Hugh Chen,Alex DeGrave, [...], and Su-In Lee. Explainable Al for Trees: From Local Explanations to Global
Understanding. Nature Machine Intelligence (2020) as a cover article of the January issue




Explainable Al for trees
(https://github.com/slundberg/shap)
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Scott Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions. NeurIPS (2018) Oral presentation (top 1%),
NeurlPS workshop on Interpretable ML (2016) — Best paper award

Scott Lundberg, Gabe Erion, Hugh Chen,Alex DeGrave, [...], and Su-In Lee. Explainable Al for Trees: From Local Explanations to Global
Understanding. Nature Machine Intelligence (2020) as a cover article of the January issue




Using SHAP values as building blocks for
interpretable ML — SHAP summary plot
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EXPRESS: Explainable prediction of anti-
cancer drug synergy

SHAP values ¢s for gene expression features
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Genes that are important to drug
synergy in AML

Positive Trend Genes
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A HOXAO9 cofactor that
drives AML in MLL-
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Hematopoietic stem cell (HSC)-like expression
sighature is important for drug synergy

" Pathways enriched in the top-ranked genes Down-regulated in
ESC,NSC, and HSC

= Potential mechanistic explanation of anti-cancer

drug synergy Up-regulated in adult

stem cells
* Drug- or combo-specific analysis reveals

previously unknown characteristics of drugs.

Metabolic pathways .
Down-regulated in LSC

compared to LPC (Gal et al.)

Hematopoietic cell lineage

Down-regulated in LSC

Cytokine-cytokine
(Gentles et al.)

receptor interactions
Up-regulated in HSC compared to
mature cells

Tight junction

Jak-STAT
signaling pathway
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Drug-specific analysis

Contains Ruxolitinib
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Explainable Al for biology and health

® Complex models are useful to
capture non-linear interactions.

" We need new methods to make
biological sense.

 interpretable predictions

Today’s talk
| SHAP, Tree SHAP, Deep
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& attribution priors precision medicine
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Lee*, Celik*, et al. (2018)
Nature Communications

Lundberg et al. Nature Biomedical Engineering
(2018) — Featured on the cover

Lundberg and Lee. NeurlPS (2017)
— Oral presentation (top |%)

Lundberg et al. Nature Machine Intelligence
— Featured on the cover




