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• Mutation rate variation
• Migration, admixture, introgression
• Heritable traits and diseases
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Central question in population genetics: data -> quantify evolution

Fast?
Flexible? 
Machine 
learning? 
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Introduction

• Population size changes
• Natural selection
• Mutation rate variation
• Migration, admixture, introgression
• Heritable traits and diseases
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• Shift to machine learning in population genetics

• Shift away from summary statistics to “raw” data

• GANs and adversarial training
• pg-gan algorithm for creating realistic simulated data

• Results on human data from Africa, Europe, and East Asia
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2013: Using machine learning to infer selection
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2013: Using machine learning to infer selection

Method: 
support vector 
machines (SVM)

Image from: “Towards Data Science”
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Which summary statistics to use?

Example summary statistics from “Deep learning for population genetic inference”, Sheehan and Song, 2016 

345 total
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2016: deep learning with summary statistics
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“Deep learning for population genetic inference”, Sheehan and Song, PLOS Comp Bio, 2016 
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Can we do better? Convolutional neural networks (CNNs)

convolution + 
nonlinearity 

max pooling flatten

classification (softmax)

bird

sun

dog

cat

fully connected layersconvolution + pooling layers

Pbird

Psun

Pdog

Pcat

1. Image CNNs are optimized for 
different local features

2. For unstructured populations, sample 
(row) order doesn’t matter 

Issues

Chan, Perrone, Spence, Jenkins, Mathieson, Song. “A Likelihood-Free Inference 
Framework for Population Genetic Data using Exchangeable Neural Networks”
NeurIPS, 2018, https://github.com/popgenmethods/defiNETti

Flagel, Brandvain, Schrider. “The unreasonable effectiveness of convolutional neural 
networks in population genetic inference.”
Molecular biology and evolution, 2018

Figure: Adit Deshpande

https://github.com/popgenmethods/defiNETti
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SNP data

2018: CNN for “raw” population genetic data
SNPs and Distances
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2018: CNN for “raw” population genetic data
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2018: CNN for “raw” population genetic data
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Additional FC 
layers
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SNPs and Distances

Flatten + Fully 
Connected
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Additional
Conv + ReLU

Output: evolutionary 
parameter of interest

2018: CNN for “raw” population genetic data
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Impact of permutation-invariant architecture (recombination hotspots)
pg-gan
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YRI: Yoruba in Ibadan, Nigeria

sireal (YRI)
simulated

Number of SNPs for simulated/real datasets

# SNPs per region

pg-gan

Even using good simulation programs, it is difficult to match real data

Real identity-
by-descent 

lengths

Simulated 
identity-by-

descent lengths

High-quality simulated 
data is crucial! 

• Develop intuition

• Validate methods

• Provide training data 
for machine learning 
methods

• Popular simulators: 
SLiM, msprime
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pg-gan

Centre de Estudios Borjanos/AFP/Getty Images

Which is “real” and 
which is “fake”?

Idea behind GANs (Generative Adversarial Networks)
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pg-gan

Which is “real” and 
which is “fake”?

Idea behind GANs (Generative Adversarial Networks)

https://webartacademy.com/fake-picasso
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pg-gan

Which is “real” and 
which is “fake”?

Idea behind GANs (Generative Adversarial Networks)

Photo: Courtesy International Foundation for Art Research (IFAR).
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pg-gan

(Source: Lost in the Louvre)People Images / Getty Images

Generator (“forger”) 
tries to create

realistic artwork 

Discriminator (“art 
critic”) tries to identify 

real vs. fake

Idea behind GANs (Generative Adversarial Networks)

GAN diagram: Adapted from Kevin McGuinness

Latent random variable

Generator
Real 

world 
images

RealFake

SampleSample

Discrim
inator

Loss

https://lostinthelouvre.wordpress.com/2013/03/08/famous-fake-friday-tom-keating/
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pg-gan algorithm overview

Generated Data
(nxSx2 matrices)

Real Data
(nxSx2 matrices)

Binary classification: synthetic or real

Generate parameters for an 
evolutionary model (e.g. N1, N2, N3)
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pg-gan Wang, Wang, Kourakos, Hoang, Lee, Mathieson, Mathieson.
“Automatic Inference of Demographic Parameters Using GANs”.
in press at MER, 2021 https://github.com/mathiesonlab/pg-gan

https://github.com/mathiesonlab/pg-gan
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Generated Data
(nxSx2 matrices)

Real Data
(nxSx2 matrices)

Binary classification: synthetic or real

Generate parameters for an 
evolutionary model (e.g. N1, N2, N3)
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Simulated annealing algorithm

Temperature cools linearly

Change one parameter each iteration

pg-gan Wang, Wang, Kourakos, Hoang, Lee, Mathieson, Mathieson.
“Automatic Inference of Demographic Parameters Using GANs”.
in press at MER, 2021 https://github.com/mathiesonlab/pg-gan

https://github.com/mathiesonlab/pg-gan
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pg-gan algorithm overview
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pg-gan discriminator architecture: extend to multiple populations
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CEU: Utah residents with Northern and Western European ancestry

YRI: Yoruba in Ibadan, Nigeria

pg-gan



Sara Mathieson

Example of failed GAN training
pg-gan

Generator cannot 
learn and reduce lossDiscriminator classifies 

everything as real 

training iteration
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Example of successful GAN training
pg-gan

Generator not fooling 
discriminator

Discriminator easily 
able to tell training from 

simulated

Generator and 
discriminator are balanced

Discriminator is 
often confused

training iteration
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CHB: 1-param model  CHB: 5:param model
pg-gan
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Simulated data under our GAN-inferred model matches real data
pg-gan
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YRI/CEU split inference

27,000

4000

29,900

T1=3500

T2=1100 0.06

18,700

CEU (European) YRI (African)

• Time measured in generations

• Out-of-African bottleneck apparent

pg-gan
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Conclusion for Machine Learning in Population Genetics

• Apply to understudied populations

• Overcome data imbalance

• Keep the data in mind

• ML methods need to be more interpretable

• Combine ML with evolutionary modeling

• Unsupervised learning

Where are we going?

Future directions for pg-gan

Conclusions
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Thank you!
Conclusions
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• Nhung Hoang

• Paul Jenkins
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• Zhanpeng Wang

• Jiaping Wang
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