Automatic evolutionary inference using Generative Adversarial Networks

Sara Mathieson

Assistant Professor

NIH, NHGRI

Machine Learning in Genomics Workshop

April 13, 2021

Introduction

Central question in population genetics: data -> quantify evolution

INPUT

OUTPUT

Sites or SNPs

Đ Q ploty ha samples,

1100001110110011110100001011110001100100011 110110000011001000000000000000001000110001110011 001011001000000000011010111101001000111000 0000100011101000000000011101001010010100111 0000010000010101011000010110110100000100100

Images: wikipedia

- Mutation rate variation
- Migration, admixture, introgression
- Heritable traits and diseases

Introduction

Central question in population genetics: data -> quantify evolution

Sites or SNPs

Đ Q ploty ha samples,

1100001110110011110100001011110001100100011 1101100000110010000000010001000110001110011 001011001000000000011010111101001000111000 0000100011101000000000011101001010010100111 0000010000010101011000010110110100000100100

Images: wikipedia

- Migration, admixture, introgression
- Heritable traits and diseases

Outline

- Shift to machine learning in population genetics
- Shift away from summary statistics to "raw" data
- GANs and adversarial training
 - pg-gan algorithm for creating realistic simulated data
- Results on human data from Africa, Europe, and East Asia

Outline

- Shift to machine learning in population genetics
- Shift away from summary statistics to "raw" data
- GANs and adversarial training
 - pg-gan algorithm for creating realistic simulated data
- Results on human data from Africa, Europe, and East Asia

2013: Using machine learning to infer selection

Learning Natural Selection from the Site Frequency Spectrum

Roy Ronen, Nitin Udpa, Eran Halperin and Vineet Bafna GENETICS September 1, 2013 vol. 195 no. 1 181-193; https://doi.org/10.1534/genetics.113.152587

2013: Using machine learning to infer selection

Learning Natural Selection from the Site Frequency Spectrum

Roy Ronen, Nitin Udpa, Eran Halperin and Vineet Bafna GENETICS September 1, 2013 vol. 195 no. 1 181-193; https://doi.org/10.1534/genetics.113.152587

Which summary statistics to use?

Number of segregating sites	3 stats
Tajima's D	3 stats
Folded site frequency spectrum (SFS)	150 stats
Length distribution between segregating sites	48 stats > 345 total
Identity-by-state (IBS) tract length distribution	90 stats
Linkage disequilibrium (LD) distributions	48 stats
Haplotype frequency statistics	3 stats

2016: deep learning with summary statistics

"Deep learning for population genetic inference", Sheehan and Song, PLOS Comp Bio, 2016

Outline

- Shift to machine learning in population genetics
- Shift away from summary statistics to "raw" data
- GANs and adversarial training
 - pg-gan algorithm for creating realistic simulated data
- Results on human data from Africa, Europe, and East Asia

Can we do better? Convolutional neural networks (CNNs)

lssues

- 1. Image CNNs are optimized for different local features
- For unstructured populations, sample (row) order doesn't matter

Flagel, Brandvain, Schrider. "The unreasonable effectiveness of convolutional neural networks in population genetic inference." *Molecular biology and evolution*, 2018

Chan, Perrone, Spence, Jenkins, Mathieson, Song. "A Likelihood-Free Inference Framework for Population Genetic Data using Exchangeable Neural Networks" *NeurIPS*, 2018, <u>https://github.com/popgenmethods/defiNETti</u>

Impact of permutation-invariant architecture (recombination hotspots)

Outline

- Shift to machine learning in population genetics
- Shift away from summary statistics to "raw" data
- GANs and adversarial training
 - pg-gan algorithm for creating realistic simulated data
- Results on human data from Africa, Europe, and East Asia

Even using good simulation programs, it is difficult to match real data

High-quality simulated data is crucial!

- Develop intuition
- Validate methods
- Provide training data for machine learning methods
- Popular simulators: SLiM, msprime

YRI: Yoruba in Ibadan, Nigeria

Idea behind GANs (Generative Adversarial Networks)

Which is "real" and which is "fake"?

Centre de Estudios Borjanos/AFP/Getty Images

Idea behind GANs (Generative Adversarial Networks)

Which is "real" and which is "fake"?

https://webartacademy.com/fake-picasso

Idea behind GANs (Generative Adversarial Networks)

Which is "real" and which is "fake"?

Photo: Courtesy International Foundation for Art Research (IFAR).

Idea behind GANs (Generative Adversarial Networks)

pg-gan algorithm overview

Wang, Wang, Kourakos, Hoang, Lee, Mathieson, Mathieson. "Automatic Inference of Demographic Parameters Using GANs". in press at *MER*, 2021 <u>https://github.com/mathiesonlab/pg-gan</u>

pg-gan algorithm overview

Wang, Wang, Kourakos, Hoang, Lee, Mathieson, Mathieson. "Automatic Inference of Demographic Parameters Using GANs". in press at *MER*, 2021 <u>https://github.com/mathiesonlab/pg-gan</u>

pg-gan discriminator architecture: extend to multiple populations

YRI: Yoruba in Ibadan, Nigeria

CEU: Utah residents with Northern and Western European ancestry

Example of failed GAN training

pg-gan

Example of successful GAN training

Sara Mathieson

pg-gan

Outline

- Shift to machine learning in population genetics
- Shift away from summary statistics to "raw" data
- GANs and adversarial training
 - pg-gan algorithm for creating realistic simulated data
- Results on human data from Africa, Europe, and East Asia

CHB: 1-param model

CHB: 5:param model

Simulated data under our GAN-inferred model matches real data

YRI/CEU split inference

- Time measured in generations
- Out-of-African bottleneck apparent

pg-gan

Conclusion for Machine Learning in Population Genetics

Future directions for pg-gan

- Apply to understudied populations
- Overcome data imbalance

Where are we going?

- Keep the data in mind
- ML methods need to be more interpretable
- Combine ML with evolutionary modeling
- Unsupervised learning

Conclusions

Thank you!

- Jeffrey Chan
- Nhung Hoang
- Paul Jenkins
- Michael Kourakos
- Hunter Lee
- lain Mathieson
- Valerio Perrone
- Yun S. Song
- Jeffrey Spence
- Zhanpeng Wang
- Jiaping Wang

END